57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantification of vestibular-induced eye movements in zebrafish larvae

      research-article
      1 , 3 , 2 , 3 , 1 ,
      BMC Neuroscience
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR), a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity.

          Results

          We have determined herein the basis of sensitivity of the larval eye movements with respect to vestibular stimulus, developmental stage, and sensory receptors of the inner ear. For our experiments, video recordings of larvae rotated sinusoidally at 0.25 Hz were analyzed to quantitate eye movements under infrared illumination. We observed a robust response that appeared as early as 72 hours post fertilization (hpf), which increased in amplitude over time. Unlike rotation about an earth horizontal axis, rotation about an earth vertical axis at 0.25 Hz did not evoke eye movements. Moreover, vestibular-induced responses were absent in mutant cdh23 larvae and larvae lacking anterior otoliths.

          Conclusions

          Our results provide evidence for a functional vestibulo-oculomotor circuit in 72 hpf zebrafish larvae that relies upon sensory input from anterior/utricular otolith organs.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells.

          Hair cells detect sound and movement and transmit this information via specialized ribbon synapses. Here we report that asteroid, a gene identified in an ethylnitrosourea mutagenesis screen of zebrafish larvae for auditory/vestibular mutants, encodes vesicular glutamate transporter 3 (Vglut3). A splice site mutation in exon 2 of vglut3 results in a severe truncation of the predicted protein product and morpholinos directed against the vglut3 ATG start site or the affected splice junction replicate the asteroid phenotype. In situ hybridization shows that vglut3 is exclusively expressed in hair cells of the ear and lateral line organ. A second transporter gene, vglut1, is also expressed in zebrafish hair cells, but the level of vglut1 mRNA is not increased in the absence of Vglut3. Antibodies against Vglut3 label the basal end of hair cells and labeling is not present in asteroid/vglut3 mutants. Based on the localization of Vglut3 in hair cells, we suspected that the lack of vestibulo-ocular and acoustic startle reflexes in asteroid/vglut3 mutants was attributable to a defect in synaptic transmission in hair cells. In support of this notion, action currents in postsynaptic acousticolateralis neurons are absent in asteroid/vglut3 mutants. At the ultrastructural level, mutant asteroid/vglut3 hair cells show a decrease in the number of ribbon-associated synaptic vesicles, indicating a role for Vglut3 in synaptic vesicle biogenesis and/or tethering to the ribbon body. Lack of postsynaptic action currents in the mutants suggests that the remaining hair-cell synaptic vesicles contain insufficient levels of glutamate for generation of action potentials in first-order neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genetics of hearing and balance in zebrafish.

            The zebrafish is an excellent model system for studying the molecular basis of inner ear development and function. The eggs develop ex utero and the ear is transparent for the first few weeks of life. Forward genetic screens and antisense technology have helped to elucidate the signaling pathways and molecules required for inner ear development and function. This review addresses the most recent advances in our understanding of how the ear forms and discusses the molecules in hair cells that are essential for sensing sound and movement in the zebrafish.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants.

              The molecular basis of sensory hair cell mechanotransduction is largely unknown. In order to identify genes that are essential for mechanosensory hair cell function, we characterized a group of recently isolated zebrafish motility mutants. These mutants are defective in balance and swim in circles but have no obvious morphological defects. We examined the mutants using calcium imaging of acoustic-vibrational and tactile escape responses, high resolution microscopy of sensory neuroepithelia in live larvae, and recordings of extracellular hair cell potentials (microphonics). Based on the analyses, we have identified several classes of genes. Mutations in sputnik and mariner affect hair bundle integrity. Mutant astronaut and cosmonaut hair cells have relatively normal microphonics and thus appear to affect events downstream of mechanotransduction. Mutant orbiter, mercury, and gemini larvae have normal hair cell morphology and yet do not respond to acoustic-vibrational stimuli. The microphonics of lateral line hair cells of orbiter, mercury, and gemini larvae are absent or strongly reduced. Therefore, these genes may encode components of the transduction apparatus.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2010
                3 September 2010
                : 11
                : 110
                Affiliations
                [1 ]Howard Hughes Medical Institute, Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
                [2 ]Oregon Hearing Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
                [3 ]Department of Cellular and Developmental Biology, 3181 SW Sam Jackson Park Road, Oregon Health and Science University, Portland, OR 97239, USA
                Article
                1471-2202-11-110
                10.1186/1471-2202-11-110
                2941499
                20815905
                3b9e2eed-7fd5-48ce-b845-9b7b20ce5738
                Copyright ©2010 Mo et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 March 2010
                : 3 September 2010
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content164

                Cited by38

                Most referenced authors231