15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack

      , , , ,
      Cancer Letters
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?

          Here, we present a unifying hypothesis about how messenger RNAs, transcribed pseudogenes, and long noncoding RNAs "talk" to each other using microRNA response elements (MREs) as letters of a new language. We propose that this "competing endogenous RNA" (ceRNA) activity forms a large-scale regulatory network across the transcriptome, greatly expanding the functional genetic information in the human genome and playing important roles in pathological conditions, such as cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation

            MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3′ untranslated region (3′ UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5′ UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EMT: 2016.

              The significant parallels between cell plasticity during embryonic development and carcinoma progression have helped us understand the importance of the epithelial-mesenchymal transition (EMT) in human disease. Our expanding knowledge of EMT has led to a clarification of the EMT program as a set of multiple and dynamic transitional states between the epithelial and mesenchymal phenotypes, as opposed to a process involving a single binary decision. EMT and its intermediate states have recently been identified as crucial drivers of organ fibrosis and tumor progression, although there is some need for caution when interpreting its contribution to metastatic colonization. Here, we discuss the current state-of-the-art and latest findings regarding the concept of cellular plasticity and heterogeneity in EMT. We raise some of the questions pending and identify the challenges faced in this fast-moving field.
                Bookmark

                Author and article information

                Journal
                Cancer Letters
                Cancer Letters
                Elsevier BV
                03043835
                July 2021
                July 2021
                : 509
                : 81-88
                Article
                10.1016/j.canlet.2021.04.002
                33848519
                3b95ba53-e904-467c-98a4-1061200bb18a
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article