10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.

          Related collections

          Most cited references210

          • Record: found
          • Abstract: found
          • Article: not found

          The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine.

          The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral neck or lumbar spine (adjusted by age, sex, and race/ethnicity to the 2010 Census) for the noninstitutionalized population aged 50 years and older from the National Health and Nutrition Examination Survey 2005-2010 to 2010 US Census population counts to determine the total number of older US residents with osteoporosis and low bone mass. There were more than 99 million adults aged 50 years and older in the US in 2010. Based on an overall 10.3% prevalence of osteoporosis, we estimated that in 2010, 10.2 million older adults had osteoporosis. The overall low bone mass prevalence was 43.9%, from which we estimated that 43.4 million older adults had low bone mass. We estimated that 7.7 million non-Hispanic white, 0.5 million non-Hispanic black, and 0.6 million Mexican American adults had osteoporosis, and another 33.8, 2.9, and 2.0 million had low bone mass, respectively. When combined, osteoporosis and low bone mass at the femoral neck or lumbar spine affected an estimated 53.6 million older US adults in 2010. Although most of the individuals with osteoporosis or low bone mass were non-Hispanic white women, a substantial number of men and women from other racial/ethnic groups also had osteoporotic BMD or low bone mass. © 2014 American Society for Bone and Mineral Research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation

            Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Normal bone anatomy and physiology.

              This review describes normal bone anatomy and physiology as an introduction to the subsequent articles in this section that discuss clinical applications of iliac crest bone biopsy. The normal anatomy and functions of the skeleton are reviewed first, followed by a general description of the processes of bone modeling and remodeling. The bone remodeling process regulates the gain and loss of bone mineral density in the adult skeleton and directly influences bone strength. Thorough understanding of the bone remodeling process is critical to appreciation of the value of and interpretation of the results of iliac crest bone histomorphometry. Osteoclast recruitment, activation, and bone resorption is discussed in some detail, followed by a review of osteoblast recruitment and the process of new bone formation. Next, the collagenous and noncollagenous protein components and function of bone extracellular matrix are summarized, followed by a description of the process of mineralization of newly formed bone matrix. The actions of biomechanical forces on bone are sensed by the osteocyte syncytium within bone via the canalicular network and intercellular gap junctions. Finally, concepts regarding bone remodeling, osteoclast and osteoblast function, extracellular matrix, matrix mineralization, and osteocyte function are synthesized in a summary of the currently understood functional determinants of bone strength. This information lays the groundwork for understanding the utility and clinical applications of iliac crest bone biopsy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                February 2022
                January 28 2022
                : 23
                : 3
                : 1500
                Article
                10.3390/ijms23031500
                35163424
                3b8efd81-8d02-4bfb-ac56-af10bedf9385
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article