4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation

      , , ,
      Energies
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper a genetic algorithm (GA) approach to design of multi-layer perceptron (MLP) for combined cycle power plant power output estimation is presented. Dataset used in this research is a part of publicly available UCI Machine Learning Repository and it consists of 9568 data points (power plant operating regimes) that is divided on training dataset that consists of 7500 data points and testing dataset containing 2068 data points. Presented research was performed with aim of increasing regression performances of MLP in comparison to ones available in the literature by utilizing heuristic algorithm. The GA described in this paper is performed by using mutation and crossover procedures. These procedures are utilized for design of 20 different chromosomes in 50 different generations. MLP configurations that are designed with GA implementation are validated by using Bland - Altman (B-A) analysis. By utilizing GA, MLP with five hidden layers of 80,25,65,75 and 80 nodes, respectively, is designed. For aforementioned MLP, k - fold cross-validation is performed in order to examine its generalization performances. The Root Mean Square Error ( R M S E ) value achieved with aforementioned MLP is 4.305 , that is significantly lower in comparison with MLP presented in available literature, but still higher than several complex algorithms such as KStar and tree based algorithms.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Adam: A Method for Stochastic Optimization

          We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm. Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding Bland Altman analysis

            In a contemporary clinical laboratory it is very common to have to assess the agreement between two quantitative methods of measurement. The correct statistical approach to assess this degree of agreement is not obvious. Correlation and regression studies are frequently proposed. However, correlation studies the relationship between one variable and another, not the differences, and it is not recommended as a method for assessing the comparability between methods.
In 1983 Altman and Bland (B&A) proposed an alternative analysis, based on the quantification of the agreement between two quantitative measurements by studying the mean difference and constructing limits of agreement.
The B&A plot analysis is a simple way to evaluate a bias between the mean differences, and to estimate an agreement interval, within which 95% of the differences of the second method, compared to the first one, fall. Data can be analyzed both as unit differences plot and as percentage differences plot.
The B&A plot method only defines the intervals of agreements, it does not say whether those limits are acceptable or not. Acceptable limits must be defined a priori, based on clinical necessity, biological considerations or other goals.
The aim of this article is to provide guidance on the use and interpretation of Bland Altman analysis in method comparison studies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Adaptive subgradient methods for online learning and stochastic optimization

                Bookmark

                Author and article information

                Contributors
                Journal
                ENERGA
                Energies
                Energies
                MDPI AG
                1996-1073
                November 2019
                November 15 2019
                : 12
                : 22
                : 4352
                Article
                10.3390/en12224352
                3b5f0d2e-af31-4592-8d10-9d70bd8bf1b1
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article