4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Constructing a self-healing injectable SABA/Borax/PDA@AgNPs hydrogel for synergistic low-temperature photothermal antibacterial therapy

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, a self-healing and injectable SABA/Borax/PDA@AgNPs hydrogel with satisfactory mechanical properties is prepared, which achieves considerable antibacterial efficacy both in vitro and in vivo.

          Abstract

          Infections caused by bacteria are one of the biggest challenges humans face around the world. Photothermal therapy (PTT) has been regarded as a promising strategy in combating pathogenic infection, however the high temperatures (55–65 °C) required during a single PTT process can induce injury to healthy tissues nearby. Combination therapy could overcome this problem by reducing the photothermal temperature. Here, we developed a self-healing and injectable hydrogel to realize low-temperature PTT (LT-PTT, ≤45 °C) for antisepsis with high-efficiency. The hybrid hydrogel is prepared by incorporating borax into a mixture of 3-aminophenylboronic acid grafted sodium alginate and nano-silver decorated polydopamine nanoparticles. Our results showed that the SABA/Borax/PDA@AgNPs hydrogel possesses satisfactory mechanical properties and self-healing capacity, and as a result, it can repair itself after being damaged mechanically, retaining its integrality and recovering its initial functionalities. Furthermore, through utilizing the photothermal property of polydopamine nanoparticles and broad-spectrum antibacterial activity of nano-silver, the hybrid hydrogel achieves excellent LT-PTT for sterilization both in vitro as well as in an in vivo mice skin wound model with no distinct injury to normal tissues. Overall, our prepared hydrogel is expected to be an excellent candidate for treating bacterial infections.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Negligible particle-specific antibacterial activity of silver nanoparticles.

          For nearly a decade, researchers have debated the mechanisms by which AgNPs exert toxicity to bacteria and other organisms. The most elusive question has been whether the AgNPs exert direct "particle-specific" effects beyond the known antimicrobial activity of released silver ions (Ag(+)). Here, we infer that Ag(+) is the definitive molecular toxicant. We rule out direct particle-specific biological effects by showing the lack of toxicity of AgNPs when synthesized and tested under strictly anaerobic conditions that preclude Ag(0) oxidation and Ag(+) release. Furthermore, we demonstrate that the toxicity of various AgNPs (PEG- or PVP- coated, of three different sizes each) accurately follows the dose-response pattern of E. coli exposed to Ag(+) (added as AgNO(3)). Surprisingly, E. coli survival was stimulated by relatively low (sublethal) concentration of all tested AgNPs and AgNO(3) (at 3-8 μg/L Ag(+), or 12-31% of the minimum lethal concentration (MLC)), suggesting a hormetic response that would be counterproductive to antimicrobial applications. Overall, this work suggests that AgNP morphological properties known to affect antimicrobial activity are indirect effectors that primarily influence Ag(+) release. Accordingly, antibacterial activity could be controlled (and environmental impacts could be mitigated) by modulating Ag(+) release, possibly through manipulation of oxygen availability, particle size, shape, and/or type of coating.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects.

            Recently, plasmonic copper sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention as materials for photothermal therapy (PTT). Previous reports have correlated photoinduced cell death to the photothermal heat mechanism of these NCs, and no evidence of their photodynamic properties has been reported yet. Herein we have prepared physiologically stable near-infrared (NIR) plasmonic copper sulfide NCs and analyzed their photothermal and photodynamic properties, including therapeutic potential in cultured melanoma cells and a murine melanoma model. Interestingly, we observe that, besides a high PTT efficacy, these copper sulfide NCs additionally possess intrinsic NIR induced photodynamic activity, whereupon they generate high levels of reactive oxygen species. Furthermore, in vitro and in vivo acute toxic responses of copper sulfide NCs were also elicited. This study highlights a mechanism of NIR light induced cancer therapy, which could pave the way toward more effective nanotherapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections

              Photothermal therapy (PTT)-derived multimodal synergistic treatments exhibit a super-additive effect in fighting bacterial infections. Due to the emerging bacterial resistance and the protection of tenacious biofilms, it is hard for the single antibacterial modality to achieve satisfactory therapeutic effects nowadays. In recent years, photothermal therapy (PTT)-derived multimodal synergistic treatments have received wide attention and exhibited cooperatively enhanced bactericidal activity. PTT features spatiotemporally controllable generation of hyperthermia that could eradicate bacteria without inducing resistance. The synergy of it with other treatments, such as chemotherapy, photo-dynamic/catalytic therapy (PDT/PCT), immunotherapy, and sonodynamic therapy (SDT), could lower the introduced laser density in PTT and avoid undesired overheating injury of normal tissues. Simultaneously, by heat-induced improvement of the bacterial membrane permeability, PTT is conducive for accelerated intracellular permeation of chemotherapeutic drugs as well as reactive oxygen species (ROS) generated by photosensitizers/sonosensitizers, and could promote infiltration of immune cells. Thereby, it could solve the currently existing sterilization deficiencies of other combined therapeutic modes, for example, bacterial resistance for chemotherapy, low drug permeability for PDT/PCT/SDT, adverse immunoreactions for immunotherapy, etc. Admittedly, PTT-derived synergistic treatments are becoming essential in fighting bacterial infection, especially those caused by antibiotic-resistant strains. This review firstly presents the classical and newly reported photothermal agents (PTAs) in brief. Profoundly, through the introduction of delicately designed nanocomposite platforms, we systematically discuss the versatile photothermal-derived multimodal synergistic therapy with the purpose of sterilization application. At the end, challenges to PTT-derived combinational therapy are presented and promising synergistic bactericidal prospects are anticipated.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                January 18 2023
                2023
                : 11
                : 3
                : 618-630
                Affiliations
                [1 ]Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, P. R. China
                [2 ]School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, P. R. China
                Article
                10.1039/D2TB02306G
                3b2d0019-0ede-4f57-b519-633d9e2d78b8
                © 2023

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article