72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, “eSR”) to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, “eGEI”). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          The genomic basis of adaptive evolution in threespine sticklebacks

          Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional discovery via a compendium of expression profiles.

            Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A quantitative survey of local adaptation and fitness trade-offs.

              The long history of reciprocal transplant studies testing the hypothesis of local adaptation has shown that populations are often adapted to their local environments. Yet many studies have not demonstrated local adaptation, suggesting that sometimes native populations are no better adapted than are genotypes from foreign environments. Local adaptation may also lead to trade-offs, in which adaptation to one environment comes at a cost of adaptation to another environment. I conducted a survey of published studies of local adaptation to quantify its frequency and magnitude and the costs associated with local adaptation. I also quantified the relationship between local adaptation and environmental differences and the relationship between local adaptation and phenotypic divergence. The overall frequency of local adaptation was 0.71, and the magnitude of the native population advantage in relative fitness was 45%. Divergence between home site environments was positively associated with the magnitude of local adaptation, but phenotypic divergence was not. I found a small negative correlation between a population's relative fitness in its native environment and its fitness in a foreign environment, indicating weak trade-offs associated with local adaptation. These results suggest that populations are often locally adapted but stochastic processes such as genetic drift may limit the efficacy of divergent selection.
                Bookmark

                Author and article information

                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                molbiolevol
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                September 2014
                21 May 2014
                21 May 2014
                : 31
                : 9
                : 2283-2296
                Affiliations
                1Department of Integrative Biology, University of Texas at Austin
                2Earth Institute and Department of Ecology, Evolution and Environmental Biology, Columbia University
                3Bioinformatics and Genomics Program, Centre for Genomic Regulation, Barcelona, Spain
                4Bioagricultural Sciences and Pest Management, Colorado State University
                5Land, Air and Water Resources, University of California, Davis
                Author notes

                Associate editor: Stephen Wright

                Present address: Arnold Arboretum and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA

                Article
                msu170
                10.1093/molbev/msu170
                4137704
                24850899
                3b1538ca-556e-421c-86cb-b02f25ff437b
                © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 14
                Categories
                Discoveries

                Molecular biology
                abiotic stress,landscape genomics,phenotypic plasticity,regulatory evolution,transcriptome

                Comments

                Comment on this article