0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A flexible design strategy to modify Ti3C2T MXene surface terminations via nucleophilic substitution for long-life Li-S batteries

      , , , , , , ,
      Journal of Energy Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          From ultrasoft pseudopotentials to the projector augmented-wave method

          Physical Review B, 59(3), 1758-1775
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            25th anniversary article: MXenes: a new family of two-dimensional materials.

            Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2 AlC, Ti3 AlC2 , and Ta4 AlC3 . MXenes -combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as "conductive clays". This article reviews progress-both -experimental and theoretical-on their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Li-O2 and Li-S batteries with high energy storage.

              Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.
                Bookmark

                Author and article information

                Journal
                Journal of Energy Chemistry
                Journal of Energy Chemistry
                Elsevier BV
                20954956
                November 2022
                November 2022
                : 74
                : 349-358
                Article
                10.1016/j.jechem.2022.07.041
                3b09984e-0372-46bb-ac60-7a4a10320105
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article