32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanism and Treatment Related to Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypoxic ischemic encephalopathy (HIE) is a type of neonatal brain injury, which occurs due to lack of supply and oxygen deprivation to the brain. It is associated with a high morbidity and mortality rate. There are several therapeutic strategies that can be used to improve outcomes in patients with HIE. These include cell therapies such as marrow mesenchymal stem cells (MSCs) and umbilical cord blood stem cells (UCBCs), which are being incorporated into the new protocols for the prevention of ischemic brain damage. The focus of this review is to discuss the mechanism of oxidative stress in HIE and summarize the current available treatments for HIE. We hope that a better understanding of the relationship between oxidative stress and HIE will provide new insights on the potential therapy of this devastating condition.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          WHO estimates of the causes of death in children.

          Child survival efforts can be effective only if they are based on accurate information about causes of deaths. Here, we report on a 4-year effort by WHO to improve the accuracy of this information. WHO established the external Child Health Epidemiology Reference Group (CHERG) in 2001 to develop estimates of the proportion of deaths in children younger than age 5 years attributable to pneumonia, diarrhoea, malaria, measles, and the major causes of death in the first 28 days of life. Various methods, including single-cause and multi-cause proportionate mortality models, were used. The role of undernutrition as an underlying cause of death was estimated in collaboration with CHERG. In 2000-03, six causes accounted for 73% of the 10.6 million yearly deaths in children younger than age 5 years: pneumonia (19%), diarrhoea (18%), malaria (8%), neonatal pneumonia or sepsis (10%), preterm delivery (10%), and asphyxia at birth (8%). The four communicable disease categories account for more than half (54%) of all child deaths. The greatest communicable disease killers are similar in all WHO regions with the exception of malaria; 94% of global deaths attributable to this disease occur in the Africa region. Undernutrition is an underlying cause of 53% of all deaths in children younger than age 5 years. Achievement of the millennium development goal of reducing child mortality by two-thirds from the 1990 rate will depend on renewed efforts to prevent and control pneumonia, diarrhoea, and undernutrition in all WHO regions, and malaria in the Africa region. In all regions, deaths in the neonatal period, primarily due to preterm delivery, sepsis or pneumonia, and birth asphyxia should also be addressed. These estimates of the causes of child deaths should be used to guide public-health policies and programmes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxygen-derived free radicals in postischemic tissue injury.

            J M McCord (1985)
            It is now clear that oxygen-derived free radicals play an important part in several models of experimentally induced reperfusion injury. Although there are certainly multiple components to clinical ischemic and reperfusion injury, it appears likely that free-radical production may make a major contribution at certain stages in the progression of the injury. The primary source of superoxide in reperfused reoxygenated tissues appears to be the enzyme xanthine oxidase, released during ischemia by a calcium-triggered proteolytic attack on xanthine dehydrogenase. Reperfused tissues are protected in a variety of laboratory models by scavengers of superoxide radicals or hydroxyl radicals or by allopurinol or other inhibitors of xanthine oxidase. Dysfunction induced by free radicals may thus be a major component of ischemic diseases of the heart, bowel, liver, kidney, and brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy.

              Hypothermia is protective against brain injury after asphyxiation in animal models. However, the safety and effectiveness of hypothermia in term infants with encephalopathy is uncertain. We conducted a randomized trial of hypothermia in infants with a gestational age of at least 36 weeks who were admitted to the hospital at or before six hours of age with either severe acidosis or perinatal complications and resuscitation at birth and who had moderate or severe encephalopathy. Infants were randomly assigned to usual care (control group) or whole-body cooling to an esophageal temperature of 33.5 degrees C for 72 hours, followed by slow rewarming (hypothermia group). Neurodevelopmental outcome was assessed at 18 to 22 months of age. The primary outcome was a combined end point of death or moderate or severe disability. Of 239 eligible infants, 102 were assigned to the hypothermia group and 106 to the control group. Adverse events were similar in the two groups during the 72 hours of cooling. Primary outcome data were available for 205 infants. Death or moderate or severe disability occurred in 45 of 102 infants (44 percent) in the hypothermia group and 64 of 103 infants (62 percent) in the control group (risk ratio, 0.72; 95 percent confidence interval, 0.54 to 0.95; P=0.01). Twenty-four infants (24 percent) in the hypothermia group and 38 (37 percent) in the control group died (risk ratio, 0.68; 95 percent confidence interval, 0.44 to 1.05; P=0.08). There was no increase in major disability among survivors; the rate of cerebral palsy was 15 of 77 (19 percent) in the hypothermia group as compared with 19 of 64 (30 percent) in the control group (risk ratio, 0.68; 95 percent confidence interval, 0.38 to 1.22; P=0.20). Whole-body hypothermia reduces the risk of death or disability in infants with moderate or severe hypoxic-ischemic encephalopathy. Copyright 2005 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                11 April 2019
                2019
                : 12
                : 88
                Affiliations
                [1] 1Department of Neurosurgery, Renmin Hospital of Wuhan University , Wuhan, China
                [2] 2Department of Neurosurgery, Harvard Medical School , Boston, MA, United States
                [3] 3Department of Neuroscience, University of Cambridge , Cambridge, United Kingdom
                [4] 4Central Laboratory, Renmin Hospital of Wuhan University , Wuhan, China
                [5] 5Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University , Wuhan, China
                [6] 6Department of Neurology, Renmin Hospital of Wuhan University , Wuhan, China
                Author notes

                Edited by: Ildikó Rácz, Universitätsklinikum Bonn, Germany

                Reviewed by: Ernest Marshall Graham, Johns Hopkins University, United States; Eva Maria Jimenez-Mateos, Trinity College Dublin, Ireland

                *Correspondence: Xiaoxing Xiong, xiaoxingxiong@ 123456whu.edu.cn Renzhong Liu, liurenzhong@ 123456whu.edu.cn

                These authors have contributed equally to this work

                Article
                10.3389/fnmol.2019.00088
                6470360
                31031592
                3ae9166f-4238-4944-8b82-14d234640d3b
                Copyright © 2019 Qin, Cheng, Zhong, Mahgoub, Akter, Fan, Aldughaim, Xie, Qin, Gu, Jian, Xiong and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 January 2019
                : 21 March 2019
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 122, Pages: 10, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                neonatal hypoxic ischemic encephalopathy,mechanisms and therapy,reactive oxygen species,oxidative stress,clinical biomarkers,antioxidant therapy,mitochondria

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content315

                Cited by36

                Most referenced authors1,974