Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of SHP2 and SHP1 Protein Tyrosine Phosphatase Activity by Chemically Induced Dimerization

      research-article
      , ,
      ACS Omega
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein tyrosine phosphatases (PTPs), the enzymes that catalyze the dephosphorylation of phosphotyrosine residues, are important regulators of mammalian cell signaling, whose activity is misregulated in numerous human diseases. PTPs are also notoriously difficult to selectively modulate with small molecules, and relatively few small-molecule tools for controlling their activities in the context of complex signaling pathways have been developed. Here, we show that a chemical inducer of dimerization (CID) can be used to selectively and potently inhibit constructs of Src-homology-2-containing PTP 2 (SHP2) that have been engineered to contain dimerization domains. Our strategy was inspired by the naturally occurring mechanism of SHP2 regulation, in which the PTP activity of SHP2’s catalytic domain is autoinhibited through an intramolecular interaction with the protein’s N-terminal SH2 (N-SH2) domain. We have re-engineered this inhibitory interaction to function intermolecularly by independently fusing the SHP2 catalytic and N-SH2 domains to protein domains that heterodimerize upon the introduction of the CID rapamycin. We show that rapamycin-induced protein dimerization leads to potent inhibition of SHP2’s catalytic activity, which is driven by increased proximity of the SHP2 catalytic and N-SH2 domains. We also demonstrate that CID-based inhibition of PTP activity can be applied to an oncogenic gain-of-function SHP2 mutant (E76K SHP2) and to the catalytic domain of the SHP2’s closest homologue, SHP1. In sum, CID-driven inhibition of PTP activity provides a broadly applicable tool for inhibiting dimerizable forms of the SHP PTPs and represents a novel paradigm for selective PTP inhibition through inducible protein–protein interactions.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.

          The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling.

            Src homology-2 (SH2) domain-containing phosphatases (Shps) are a small, highly conserved subfamily of protein-tyrosine phosphatases, members of which are present in both vertebrates and invertebrates. The mechanism of regulation of Shps by ligand binding is now well understood. Much is also known about the normal signaling pathways regulated by each Shp and the consequences of Shp deficiency. Recent studies have identified mutations in human Shp2 as the cause of the inherited disorder Noonan syndrome. Shp2 mutations might also contribute to the pathogenesis of some leukemias. In addition, Shp2 might be a key virulence determinant for the important human pathogen Helicobacter pylori. Despite these efforts, however, the key targets of each Shp have remained elusive. Identifying these substrates remains a major challenge for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of the tyrosine phosphatase SHP-2.

              The structure of the SHP-2 tyrosine phosphatase, determined at 2.0 angstroms resolution, shows how its catalytic activity is regulated by its two SH2 domains. In the absence of a tyrosine-phosphorylated binding partner, the N-terminal SH2 domain binds the phosphatase domain and directly blocks its active site. This interaction alters the structure of the N-SH2 domain, disrupting its phosphopeptide-binding cleft. Conversely, interaction of the N-SH2 domain with phosphopeptide disrupts its phosphatase recognition surface. Thus, the N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. Recognition of bisphosphorylated ligands by the tandem SH2 domains is an integral element of this switch; the C-terminal SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                11 April 2022
                26 April 2022
                : 7
                : 16
                : 14180-14188
                Affiliations
                Department of Chemistry, Amherst College , Amherst, Massachusetts 01002, United States
                Author notes
                Author information
                https://orcid.org/0000-0001-8394-280X
                Article
                10.1021/acsomega.2c00780
                9089384
                35559188
                3ae3d5bb-657f-4e02-8371-4aae399d19f7
                © 2022 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 07 February 2022
                : 21 March 2022
                Funding
                Funded by: National Institute of General Medical Sciences, doi 10.13039/100000057;
                Award ID: R15GM071388
                Categories
                Article
                Custom metadata
                ao2c00780
                ao2c00780

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content629

                Cited by4

                Most referenced authors804