63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EphA4 Activation of c-Abl Mediates Synaptic Loss and LTP Blockade Caused by Amyloid-β Oligomers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The early stages of Alzheimer's disease are characterised by impaired synaptic plasticity and synapse loss. Here, we show that amyloid-β oligomers (AβOs) activate the c-Abl kinase in dendritic spines of cultured hippocampal neurons and that c-Abl kinase activity is required for AβOs-induced synaptic loss. We also show that the EphA4 receptor tyrosine kinase is upstream of c-Abl activation by AβOs. EphA4 tyrosine phosphorylation (activation) is increased in cultured neurons and synaptoneurosomes exposed to AβOs, and in Alzheimer-transgenic mice brain. We do not detect c-Abl activation in EphA4-knockout neurons exposed to AβOs. More interestingly, we demonstrate EphA4/c-Abl activation is a key-signalling event that mediates the synaptic damage induced by AβOs. According to this results, the EphA4 antagonistic peptide KYL and c-Abl inhibitor STI prevented i) dendritic spine reduction, ii) the blocking of LTP induction and iii) neuronal apoptosis caused by AβOs. Moreover, EphA4-/- neurons or sh-EphA4-transfected neurons showed reduced synaptotoxicity by AβOs. Our results are consistent with EphA4 being a novel receptor that mediates synaptic damage induced by AβOs. EphA4/c-Abl signalling could be a relevant pathway involved in the early cognitive decline observed in Alzheimer's disease patients.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers.

          Synapse deterioration underlying severe memory loss in early Alzheimer's disease (AD) is thought to be caused by soluble amyloid beta (Abeta) oligomers. Mechanistically, soluble Abeta oligomers, also referred to as Abeta-derived diffusible ligands (ADDLs), act as highly specific pathogenic ligands, binding to sites localized at particular synapses. This binding triggers oxidative stress, loss of synaptic spines, and ectopic redistribution of receptors critical to plasticity and memory. We report here the existence of a protective mechanism that naturally shields synapses against ADDL-induced deterioration. Synapse pathology was investigated in mature cultures of hippocampal neurons. Before spine loss, ADDLs caused major downregulation of plasma membrane insulin receptors (IRs), via a mechanism sensitive to calcium calmodulin-dependent kinase II (CaMKII) and casein kinase II (CK2) inhibition. Most significantly, this loss of surface IRs, and ADDL-induced oxidative stress and synaptic spine deterioration, could be completely prevented by insulin. At submaximal insulin doses, protection was potentiated by rosiglitazone, an insulin-sensitizing drug used to treat type 2 diabetes. The mechanism of insulin protection entailed a marked reduction in pathogenic ADDL binding. Surprisingly, insulin failed to block ADDL binding when IR tyrosine kinase activity was inhibited; in fact, a significant increase in binding was caused by IR inhibition. The protective role of insulin thus derives from IR signaling-dependent downregulation of ADDL binding sites rather than ligand competition. The finding that synapse vulnerability to ADDLs can be mitigated by insulin suggests that bolstering brain insulin signaling, which can decline with aging and diabetes, could have significant potential to slow or deter AD pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein.

            Inability to form new memories is an early clinical sign of Alzheimer's disease (AD). There is ample evidence that the amyloid-beta (Abeta) peptide plays a key role in the pathogenesis of this disorder. Soluble, bio-derived oligomers of Abeta are proposed as the key mediators of synaptic and cognitive dysfunction, but more tractable models of Abeta-mediated cognitive impairment are needed. Here we report that, in mice, acute intracerebroventricular injections of synthetic Abeta(1-42) oligomers impaired consolidation of the long-term recognition memory, whereas mature Abeta(1-42) fibrils and freshly dissolved peptide did not. The deficit induced by oligomers was reversible and was prevented by an anti-Abeta antibody. It has been suggested that the cellular prion protein (PrP(C)) mediates the impairment of synaptic plasticity induced by Abeta. We confirmed that Abeta(1-42) oligomers interact with PrP(C), with nanomolar affinity. However, PrP-expressing and PrP knock-out mice were equally susceptible to this impairment. These data suggest that Abeta(1-42) oligomers are responsible for cognitive impairment in AD and that PrP(C) is not required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches.

              Amyloid plaques are a hallmark of Alzheimer disease, but their importance in its pathogenesis is controversial. By neuronal labeling and transcranial two-photon imaging, we show in a transgenic mouse model of Alzheimer disease that dendrites passing through or near fibrillar amyloid deposits undergo spine loss and shaft atrophy, and nearby axons develop large varicosities, together leading to neurite breakage and large-scale, permanent disruption of neuronal connections. Thus, fibrillar amyloid deposition is more detrimental to neuronal circuitry than previously thought, underscoring the importance of prevention and early clearance of plaques.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 March 2014
                : 9
                : 3
                : e92309
                Affiliations
                [1 ]Departamento de Biología Celular y Molecular, Laboratorio de Señalización Celular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
                [2 ]Departamento de Biología Celular y Molecular, Millenium Nucleus in Stress and Addiction, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
                [3 ]Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
                [4 ]Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
                University of Leipzig, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LV AA. Performed the experiments: LV NL LE AG. Analyzed the data: FS KA. Contributed reagents/materials/analysis tools: KG NI EP AA. Wrote the paper: LV AA.

                Article
                PONE-D-13-43779
                10.1371/journal.pone.0092309
                3962387
                24658113
                3ae18ef5-e3f0-4a49-b5a2-d4d221f193b6
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 October 2013
                : 21 February 2014
                Page count
                Pages: 13
                Funding
                This research was supported by grants from FONDECYT 3120015 (LV), FONDECYT 1120512 and FONDEF D10I1077 (AA), FONDECYT 11130561 (LE) and National Institutes of Health grants CA138390 and HD025938 (EP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Signal Transduction
                Cell Signaling
                Membrane Receptor Signaling
                Signaling Cascades
                Molecular Cell Biology
                Neuroscience
                Cellular Neuroscience
                Molecular Neuroscience
                Medicine and Health Sciences
                Mental Health and Psychiatry
                Dementia
                Alzheimer Disease
                Neurology
                Neurobiology of Disease and Regeneration

                Uncategorized
                Uncategorized

                Comments

                Comment on this article