28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms

      1 , 1 , 1
      Angewandte Chemie International Edition
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: not found
          • Article: not found

          Atomic layer deposition: an overview.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration.

            Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles.

              Carbon dioxide reduction is an essential component of many prospective technologies for the renewable synthesis of carbon-containing fuels. Known catalysts for this reaction generally suffer from low energetic efficiency, poor product selectivity, and rapid deactivation. We show that the reduction of thick Au oxide films results in the formation of Au nanoparticles ("oxide-derived Au") that exhibit highly selective CO(2) reduction to CO in water at overpotentials as low as 140 mV and retain their activity for at least 8 h. Under identical conditions, polycrystalline Au electrodes and several other nanostructured Au electrodes prepared via alternative methods require at least 200 mV of additional overpotential to attain comparable CO(2) reduction activity and rapidly lose their activity. Electrokinetic studies indicate that the improved catalysis is linked to dramatically increased stabilization of the CO(2)(•-) intermediate on the surfaces of the oxide-derived Au electrodes.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                September 11 2017
                September 11 2017
                July 26 2017
                : 56
                : 38
                : 11326-11353
                Affiliations
                [1 ]Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 China
                Article
                10.1002/anie.201612214
                3a995efe-196f-4824-88d8-527c22aadfef
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article