6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Identification and quantitative determination of glucosinolates in seeds and edible parts of Korean Chinese cabbage

      , ,
      Food Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana.

          The glucosinolate content of various organs of the model plant Arabidopsis thaliana (L.) Heynh., Columbia (Col-0) ecotype, was analyzed at different stages during its life cycle. Significant differences were noted among organs in both glucosinolate concentration and composition. Dormant and germinating seeds had the highest concentration (2.5-3.3% by dry weight), followed by inflorescences, siliques (fruits), leaves and roots. While aliphatic glucosinolates predominated in most organs, indole glucosinolates made up nearly half of the total composition in roots and late-stage rosette leaves. Seeds had a very distinctive glucosinolate composition. They possessed much higher concentrations of several types of aliphatic glucosinolates than other organs, including methylthioalkyl and, hydroxyalkyl glucosinolates and compounds with benzoate esters than other organs. From a developmental perspective, older leaves had lower glucosinolate concentrations than younger leaves, but this was not due to decreasing concentrations in individual leaves with age (glucosinolate concentration was stable during leaf expansion). Rather, leaves initiated earlier in development simply had much lower rates of glucosinolate accumulation per dry weight gain throughout their lifetimes. During seed germination and leaf senescence, there were significant declines in glucosinolate concentration. The physiological and ecological significance of these findings is briefly discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure.

            Consumption of vegetables, especially crucifers, reduces the risk of developing cancer. Although the mechanisms of this protection are unclear, feeding of vegetables induces enzymes of xenobiotic metabolism and thereby accelerates the metabolic disposal of xenobiotics. Induction of phase II detoxication enzymes, such as quinone reductase [NAD(P)H:(quinone-acceptor) oxidoreductase, EC 1.6.99.2] and glutathione S-transferases (EC 2.5.1.18) in rodent tissues affords protection against carcinogens and other toxic electrophiles. To determine whether enzyme induction is responsible for the protective properties of vegetables in humans requires isolation of enzyme inducers from these sources. By monitoring quinone reductase induction in cultured murine hepatoma cells as the biological assay, we have isolated and identified (-)-1-isothiocyanato-(4R)-(methylsulfinyl)butane [CH3-SO-(CH2)4-NCS, sulforaphane] as a major and very potent phase II enzyme inducer in SAGA broccoli (Brassica oleracea italica). Sulforaphane is a monofunctional inducer, like other anticarcinogenic isothiocyanates, and induces phase II enzymes selectively without the induction of aryl hydrocarbon receptor-dependent cytochromes P-450 (phase I enzymes). To elucidate the structural features responsible for the high inducer potency of sulforaphane, we synthesized racemic sulforaphane and analogues differing in the oxidation state of sulfur and the number of methylene groups: CH3-SOm-(CH2)n-NCS, where m = 0, 1, or 2 and n = 3, 4, or 5, and measured their inducer potencies in murine hepatoma cells. Sulforaphane is the most potent inducer, and the presence of oxygen on sulfur enhances potency. Sulforaphane and its sulfide and sulfone analogues induced both quinone reductase and glutathione transferase activities in several mouse tissues. The induction of detoxication enzymes by sulforaphane may be a significant component of the anticarcinogenic action of broccoli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variation of glucosinolates in vegetable crops of Brassica oleracea.

              Glucosinolates were evaluated in 5 groups and 65 accessions of Brassica oleracea (50 broccoli, 4 Brussels sprouts, 6 cabbage, 3 cauliflower, and 2 kale) grown under uniform cultural conditions. Glucosinolates and their concentrations varied among the different groups and within each group. The predominant glucosinolates in broccoli were 4-methylsulfinylbutyl glucosinolate (glucoraphanin), 3-butenyl glucosinolate (gluconapin), and 3-indolylmethyl glucosinoate (glucobrassicin). Glucoraphanin concentration in broccoli ranged from 0.8 micromol g(-1) DW in EV6-1 to 21.7 micromol g(-1) DW in Brigadier. Concentrations of the other glucosinolates in broccoli varied similarly over a wide range. In Brussels sprouts, cabbage, cauliflower, and kale, the predominant glucosinolates were sinigrin (8.9, 7.8, 9.3, and 10.4 micromol g(-1) DW, respectively) and glucobrassicin (3.2, 0.9, 1.3, and 1.2 micromol g(-1) DW, respectively). Brussels sprouts also had significant amounts of gluconapin (6.9 micromol g(-1) DW). Wide variations in glucosinolate content among genotypes suggest differences in their health-promoting properties and the opportunity for enhancement of their levels through genetic manipulation.
                Bookmark

                Author and article information

                Journal
                Food Chemistry
                Food Chemistry
                Elsevier BV
                03088146
                October 2011
                October 2011
                : 128
                : 4
                : 1115-1120
                Article
                10.1016/j.foodchem.2010.11.102
                3a913fd3-0357-4a0c-b043-f4c3f1be007b
                © 2011

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article