45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Kinetic Analysis of Secretory Protein Traffic and Characterization of Golgi to Plasma Membrane Transport Intermediates in Living Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantitative time-lapse imaging data of single cells expressing the transmembrane protein, vesicular stomatitis virus ts045 G protein fused to green fluorescent protein (VSVG–GFP), were used for kinetic modeling of protein traffic through the various compartments of the secretory pathway. A series of first order rate laws was sufficient to accurately describe VSVG–GFP transport, and provided compartment residence times and rate constants for transport into and out of the Golgi complex and delivery to the plasma membrane. For ER to Golgi transport the mean rate constant (i.e., the fraction of VSVG–GFP moved per unit of time) was 2.8% per min, for Golgi to plasma membrane transport it was 3.0% per min, and for transport from the plasma membrane to a degradative site it was 0.25% per min. Because these rate constants did not change as the concentration of VSVG–GFP in different compartments went from high (early in the experiment) to low (late in the experiment), secretory transport machinery was never saturated during the experiments.

          The processes of budding, translocation, and fusion of post-Golgi transport intermediates carrying VSVG– GFP to the plasma membrane were also analyzed using quantitative imaging techniques. Large pleiomorphic tubular structures, rather than small vesicles, were found to be the primary vehicles for Golgi to plasma membrane transport of VSVG–GFP. These structures budded as entire domains from the Golgi complex and underwent dynamic shape changes as they moved along microtubule tracks to the cell periphery. They carried up to 10,000 VSVG–GFP molecules and had a mean life time in COS cells of 3.8 min. In addition, they fused with the plasma membrane without intersecting other membrane transport pathways in the cell. These properties suggest that the post-Golgi intermediates represent a unique transport organelle for conveying large quantities of protein cargo from the Golgi complex directly to the plasma membrane.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Late stages of spinodal decomposition in binary mixtures

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Green fluorescent protein as a marker for gene expression.

            A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ER-to-Golgi transport visualized in living cells.

              Newly synthesized proteins that leave the endoplasmic reticulum (ER) are funnelled through the Golgi complex before being sorted for transport to their different final destinations. Traditional approaches have elucidated the biochemical requirements for such transport and have established a role for transport intermediates. New techniques for tagging proteins fluorescently have made it possible to follow the complete life history of single transport intermediates in living cells, including their formation, path and velocity en route to the Golgi complex. We have now visualized ER-to-Golgi transport using the viral glycoprotein ts045 VSVG tagged with green fluorescent protein (VSVG-GFP). Upon export from the ER, VSVG-GFP became concentrated in many differently shaped, rapidly forming pre-Golgi structures, which translocated inwards towards the Golgi complex along microtubules by using the microtubule minus-end-directed motor complex of dynein/dynactin. No loss of fluorescent material from pre-Golgi structures occurred during their translocation to the Golgi complex and they frequently stretched into tubular shapes. Together, our results indicate that these pre-Golgi carrier structures moving unidirectionally along microtubule tracks are responsible for transporting VSVG-GFP through the cytoplasm to the Golgi complex. This contrasts with the traditional focus on small vesicles as the primary vehicles for ER-to-Golgi transport.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                14 December 1998
                : 143
                : 6
                : 1485-1503
                Affiliations
                Cell Biology and Metabolism Branch, National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, Maryland 20892; []Center for Studies of Physics and Biology, Rockefeller University, New York, New York 10021; and [§ ]BioInformatics Services, Rockville, Maryland 20854
                Author notes

                Address correspondence to J. Lippincott-Schwartz, Cell Biology and Metabolism Branch, National Institutes of Health, National Institute of Child Health and Human Development, Building 18T, Bethesda, MD 20892. Tel.: (301) 402-1010. Fax: (301) 402-0078. E-mail: jlippin@ 123456helix.nih.gov

                Article
                10.1083/jcb.143.6.1485
                2132993
                9852146
                3a6dc58d-be7d-4b92-a500-c2a93f007e06
                Copyright @ 1998
                History
                : 10 August 1998
                : 20 October 1998
                Categories
                Article

                Cell biology
                golgi-to-plasma membrane traffic,gfp,secretion,kinetics,transport intermediates
                Cell biology
                golgi-to-plasma membrane traffic, gfp, secretion, kinetics, transport intermediates

                Comments

                Comment on this article