5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lentiviral modification of enriched populations of bovine male gonocytes.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Undifferentiated germ cells have the capacity to develop into sperm capable of fertilizing oocytes and contributing genetic material to subsequent generations. The most primitive prepubertal undifferentiated germ cells include gonocytes and undifferentiated spermatogonia, including spermatogonial stem cells (SSC). Gonocytes, present in the testis at birth, differentiate into SSC, which maintain spermatogenesis for the remainder of the male's life. Because of their capacity to contribute to lifelong spermatogenesis, undifferentiated germ cells are attractive targets for genetic modification to produce transgenic animals, including cattle. To maximize the efficiency of genetic modification of bovine gonocytes and SSC, effective enrichment techniques need to be developed. Selection of bovine gonocytes using differential plating was improved 8-fold (P < 0.001) when using a combination of extracellular matrix proteins, including laminin, fibronectin, collagen type IV, and gelatin, compared to using laminin and gelatin alone. Selected cells labeled with PKH26 formed colonies of donor-derived germ cells after transplantation into recipient mouse testes, indicating putative stem cell function. Significantly more colonies (P < 0.001) per 1 × 10(5) viable transplanted cells were formed from isolated nonadherent cells (203 ± 23.2) compared to adherent (20 ± 2.7) or Percoll (45.5 ± 4.5) selected cells. After selection, some gonocytes were transduced using a lentiviral vector containing the transgene for the enhanced green fluorescent protein. Transduction efficiency was 17%. Collectively, these data demonstrate effective methods for the selection and genetic modification of bovine undifferentiated germ cells.

          Related collections

          Author and article information

          Journal
          J. Anim. Sci.
          Journal of animal science
          American Society of Animal Science (ASAS)
          1525-3163
          0021-8812
          Jan 2014
          : 92
          : 1
          Affiliations
          [1 ] Department of Animal Science and Technology, Chung-Ang University, Ansung, Gyeonggi-do 456-756, Korea.
          Article
          jas.2013-6885
          10.2527/jas.2013-6885
          24166994
          3a682a1f-4ac5-487c-a772-a7e1b1e57d4c
          History

          Comments

          Comment on this article