13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Occurrence of Two Resin Acid-Degrading Bacteria and a Gene Encoding Resin Acid Biodegradation in Pulp and Paper Mill Effluent Biotreatment Systems Assayed by PCR.

      Microbial Ecology

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          > Abstract We examined the distribution of two dehydroabietic acid-degrading bacteria, Pseudomonas abietaniphila BKME-9 and Zoogloea resiniphila DhA-35, in biotreatment systems for pulp and paper mill effluents (PPMEs) using PCR assays. These two bacteria were first isolated from two PPME biotreatment systems and can degrade both dehydroabietic acid (DhA) and other abietane resin acids. We also examined the distribution of a catabolic gene, ditA1, encoding the alpha subunit of an aromatic ring-hydroxylating dioxygenase involved in DhA degradation by BKME-9. PCR primers specific for the 16S rDNA of BKME-9 and of DhA-35 and specific for ditA1 were used. Among 3 laboratory- and 17 full-scale PPME biotreatment systems, 10 contained phylotype BKME-9, 3 contained phylotype DhA-35, and 11 contained ditA1, indicating the wider distribution of phylotype BKME-9 than of phylotype DhA-35. Both phylotype BKME-9 and ditA1 were detected in the biotreatment system from which BKME-9 was originally isolated in 1994, suggesting the persistance of BKME-9 in that biotreatment system. The detection limit of the PCR assay was one cell per PCR reaction, which corresponds to one BKME-9 cell per 6 x 10(7) total sludge bacteria. A competitive PCR assay indicated that ditA1 ranged from 51 to 250 copies/mg of dry biomass. BKME-9 appears to contribute to the biodegration of resin acids in some PPME biotreatment systems. Using degenerate PCR primers and touchdown PCR, we obtained from our DhA-degrading strain collection six DNA sequences putatively homologous to that of ditA1. Cluster analysis of these DNA sequences suggests that ditA1 encodes a representative of a novel class of dioxygenase enzymes.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p114.html

          Related collections

          Author and article information

          Journal
          10441704

          Comments

          Comment on this article