1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The near-symmetry of protein oligomers: NMR-derived structures

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK
      Proteins, Biochemistry, Structural biology, NMR spectroscopy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of oligomeric proteins form clusters which have rotational or dihedral symmetry. Despite the many advantages of symmetric packing, protein oligomers are only nearly symmetric, and the origin of this phenomenon is still in need to be fully explored. Here we apply near-symmetry analyses by the Continuous Symmetry Measures methodology of protein homomers to their natural state, namely their structures in solution. NMR-derived structural data serves us for that purpose. We find that symmetry deviations of proteins are by far higher in solution, compared to the crystalline state; that much of the symmetry distortion is due to amino acids along the interface between the subunits; that the distortions are mainly due to hydrophilic amino acids; and that distortive oligomerization processes such as the swap-domain mechanism can be identified by the symmetry analysis. Most of the analyses were carried out on distorted C 2 -symmetry dimers, but C 3 and D 2 cases were analyzed as well. Our NMR analysis supports the idea that the crystallographic B-factor represents non-classical crystals, in which different conformers pack in the crystal, perhaps from the conformers which the NMR analysis provides.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Structural symmetry and protein function.

          The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Frustration in biomolecules.

            Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for function. In this way, we hope to illustrate how Frustration is a fundamental concept in molecular biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of non-crystallographic symmetry in protein structure refinement.

              G Kleywegt (1996)
              Several methods to assess the (dis)similarity of protein structures objectively are described, some of which, when applied to non-crystallographically related protein models, are able to discriminate between significant differences and 'random noise'. Some of these methods have been used to investigate a sample of several hundred protein structures which have been solved by means of X-ray crystallography in order to investigate the extent to which non-crystallographically related protein models differ from one another. It is shown that the extent of such differences is largely dependent on the resolution of the data used for the determination and refinement of the structure and, measured by some statistics, even varies essentially linearly with the resolution. The implications of these findings for the strategies used to refine structures with non-crystallographic symmetry, in particular at low resolution, are discussed. Finally, two examples are given of recent structure determinations from this laboratory in which the presence (and employment) of non-crystallographic symmetry was crucial to the solution and refinement of the structure.
                Bookmark

                Author and article information

                Contributors
                david.avnir@mail.huji.ac.il
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 May 2020
                20 May 2020
                2020
                : 10
                : 8367
                Affiliations
                ISNI 0000 0004 1937 0538, GRID grid.9619.7, Institute of Chemistry, , The Hebrew University of Jerusalem, ; Jerusalem, 9190401 Israel
                Article
                65097
                10.1038/s41598-020-65097-8
                7239866
                32433550
                3a513462-6f8a-4e2b-a1d0-bf134b1ff0a3
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 December 2019
                : 18 March 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                proteins,biochemistry,structural biology,nmr spectroscopy
                Uncategorized
                proteins, biochemistry, structural biology, nmr spectroscopy

                Comments

                Comment on this article