49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Histone deacetylase 6 structure and molecular basis of catalysis and inhibition

      research-article
      1 , 1 , 2
      Nature chemical biology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histone deacetylase 6 (HDAC6) is a critical target for drug design due to its role in oncogenic transformation and cancer metastasis, and is unique among all histone deacetylases in that it contains tandem catalytic domains designated CD1 and CD2. We now report the crystal structures of CD2 from Homo sapiens and CD1 and CD2 from Danio rerio HDAC6, and we correlate these structures with activity measurements using a panel of 13 different substrates. The catalytic activity of CD2 from both species exhibits broad substrate specificity, whereas that of CD1 is highly specific for substrates bearing C-terminal acetyllysine residues. Crystal structures of substrate complexes yield unprecedented snapshots of the catalytic mechanism. Additionally, crystal structures of complexes with 8 different inhibitors, including Belinostat and Panobinostat (currently used in cancer chemotherapy), the macrocyclic tetrapeptide HC toxin, and the HDAC6-specific inhibitor N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide, reveal surprising new insight regarding changes in Zn 2+ coordination and isozyme-specific inhibition.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Writers and readers of histone acetylation: structure, mechanism, and inhibition.

          Histone acetylation marks are written by histone acetyltransferases (HATs) and read by bromodomains (BrDs), and less commonly by other protein modules. These proteins regulate many transcription-mediated biological processes, and their aberrant activities are correlated with several human diseases. Consequently, small molecule HAT and BrD inhibitors with therapeutic potential have been developed. Structural and biochemical studies of HATs and BrDs have revealed that HATs fall into distinct subfamilies containing a structurally related core for cofactor binding, but divergent flanking regions for substrate-specific binding, catalysis, and autoregulation. BrDs adopt a conserved left-handed four-helix bundle to recognize acetyllysine; divergent loop residues contribute to substrate-specific acetyllysine recognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acetylation: a regulatory modification to rival phosphorylation?

            The fact that histones are modified by acetylation has been known for almost 30 years. The recent identification of enzymes that regulate histone acetylation has revealed a broader use of this modification than was suspected previously. Acetylases are now known to modify a variety of proteins, including transcription factors, nuclear import factors and alpha-tubulin. Acetylation regulates many diverse functions, including DNA recognition, protein-protein interaction and protein stability. There is even a conserved structure, the bromodomain, that recognizes acetylated residues and may serve as a signalling domain. If you think all this sounds familiar, it should be. These are features characteristic of kinases. So, is acetylation a modification analogous to phosphorylation? This review sets out what we know about the broader substrate specificity and regulation of acetyl- ases and goes on to compare acetylation with the process of phosphorylation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three proteins define a class of human histone deacetylases related to yeast Hda1p.

              Gene expression is in part controlled by chromatin remodeling factors and the acetylation state of nucleosomal histones. The latter process is regulated by histone acetyltransferases and histone deacetylases (HDACs). Previously, three human and five yeast HDAC enzymes had been identified. These can be categorized into two classes: the first class represented by yeast Rpd3-like proteins and the second by yeast Hda1-like proteins. Human HDAC1, HDAC2, and HDAC3 proteins are members of the first class, whereas no class II human HDAC proteins had been identified. The amino acid sequence of Hda1p was used to search the GenBank/expressed sequence tag databases to identify partial sequences from three putative class II human HDAC proteins. The corresponding full-length cDNAs were cloned and defined as HDAC4, HDAC5, and HDAC6. These proteins possess certain features present in the conserved catalytic domains of class I human HDACs, but also contain additional sequence domains. Interestingly, HDAC6 contains an internal duplication of two catalytic domains, which appear to function independently of each other. These class II HDAC proteins have differential mRNA expression in human tissues and possess in vitro HDAC activity that is inhibited by trichostatin A. Coimmunoprecipitation experiments indicate that these HDAC proteins are not components of the previously identified HDAC1 and HDAC2 NRD and mSin3A complexes. However, HDAC4 and HDAC5 associate with HDAC3 in vivo. This finding suggests that the human class II HDAC enzymes may function in cellular processes distinct from those of HDAC1 and HDAC2.
                Bookmark

                Author and article information

                Journal
                101231976
                32624
                Nat Chem Biol
                Nat. Chem. Biol.
                Nature chemical biology
                1552-4450
                1552-4469
                13 April 2016
                25 July 2016
                September 2016
                25 January 2017
                : 12
                : 9
                : 741-747
                Affiliations
                [1 ]Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
                [2 ]Radcliffe Institute for Advanced Study and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
                Author notes
                [* ]Correspondence should be addressed to D.W.C. ( chris@ 123456sas.upenn.edu )
                Article
                NIHMS777348
                10.1038/nchembio.2134
                4990478
                27454933
                3a36678e-2db4-4f5b-8b5c-015a2417ee92

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content297

                Cited by119

                Most referenced authors1,661