10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Plasmacytoid dendritic cells (pDCs) are sensor cells with diverse immune functions, from type I interferon (IFN-I) production to antigen presentation, T cell activation, and tolerance. Regulation of these functions remains poorly understood but could be mediated by functionally specialized pDC subpopulations. We address pDC diversity using a high-dimensional single-cell approach: mass cytometry (CyTOF). Our analysis uncovers a murine pDC-like population that specializes in antigen presentation with limited capacity for IFN-I production. Using a multifaceted cross-species comparison, we show that this pDC-like population is the definitive murine equivalent of the recently described human AXL + DCs, which we unify under the name transitional DCs (tDCs) given their continuum of pDC and cDC2 characteristics. tDCs share developmental traits with pDCs, as well as recruitment dynamics during viral infection. Altogether, we provide a framework for deciphering the function of pDCs and tDCs during diseases, which has the potential to open new avenues for therapeutic design.

          Graphical Abstract

          In Brief

          Dendritic cells (DCs) are unique therapeutic targets given their capacity to modulate immune responses. Yet complete alignment of the DC network between species is lacking. Using a multidimensional approach, Leylek et al. identify the mouse homolog of human AXL + DCs, named transitional DCs (tDCs), and reveal their similarities with pDCs.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          The nature of the principal type 1 interferon-producing cells in human blood.

          Interferons (IFNs) are the most important cytokines in antiviral immune responses. "Natural IFN-producing cells" (IPCs) in human blood express CD4 and major histocompatibility complex class II proteins, but have not been isolated and further characterized because of their rarity, rapid apoptosis, and lack of lineage markers. Purified IPCs are here shown to be the CD4(+)CD11c- type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge. pDC2s are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch–RBP-J signaling controls the homeostasis of CD8− dendritic cells in the spleen

            Signaling through Notch receptors and their transcriptional effector RBP-J is essential for lymphocyte development and function, whereas its role in other immune cell types is unclear. We tested the function of the canonical Notch–RBP-J pathway in dendritic cell (DC) development and maintenance in vivo. Genetic inactivation of RBP-J in the bone marrow did not preclude DC lineage commitment but caused the reduction of splenic DC fraction. The inactivation of RBP-J in DCs using a novel DC-specific deleter strain caused selective loss of the splenic CD8− DC subset and reduced the frequency of cytokine-secreting CD8− DCs after challenge with Toll-like receptor ligands. In contrast, other splenic DC subsets and DCs in the lymph nodes and tissues were unaffected. The RBP-J–deficient splenic CD8− DCs were depleted at the postprogenitor stage, exhibited increased apoptosis, and lost the expression of the Notch target gene Deltex1. In the spleen, CD8− DCs were found adjacent to cells expressing the Notch ligand Delta-like 1 in the marginal zone (MZ). Thus, canonical Notch–RBP-J signaling controls the maintenance of CD8− DCs in the splenic MZ, revealing an unexpected role of the Notch pathway in the innate immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.

              Plasmacytoid dendritic cells (PDCs) represent a unique immune cell type specialized in type I interferon (IFN) secretion in response to viral nucleic acids. The molecular control of PDC lineage specification has been poorly understood. We report that basic helix-loop-helix transcription factor (E protein) E2-2/Tcf4 is preferentially expressed in murine and human PDCs. Constitutive or inducible deletion of murine E2-2 blocked the development of PDCs but not of other lineages and abolished IFN response to unmethylated DNA. Moreover, E2-2 haploinsufficiency in mice and in human Pitt-Hopkins syndrome patients was associated with aberrant expression profile and impaired IFN response of the PDC. E2-2 directly activated multiple PDC-enriched genes, including transcription factors involved in PDC development (SpiB, Irf8) and function (Irf7). These results identify E2-2 as a specific transcriptional regulator of the PDC lineage in mice and humans and reveal a key function of E proteins in the innate immune system.
                Bookmark

                Author and article information

                Journal
                101573691
                39703
                Cell Rep
                Cell Rep
                Cell reports
                2211-1247
                11 December 2019
                10 December 2019
                09 January 2020
                : 29
                : 11
                : 3736-3750.e8
                Affiliations
                [1 ]Microbiology & Immunology Department and Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
                [2 ]Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
                [3 ]These authors contributed equally
                [4 ]Lead Contact
                Author notes
                [* ]Correspondence: jidoyaga@ 123456stanford.edu

                AUTHOR CONTRIBUTIONS

                Conceptualization, R.L., M.A.-H., and J.I.; Methodology, R.L., M.A.-H., A.L., Z.L., and J.I.; Formal Analysis, R.L., M.A.-H., Z.L., and J.I.; Investigation, R. L., M.A.-H., Z.L., and O.A.P.; Resources, O.A.P. and B.R.; Writing, R.L., M.A.-H., and J.I.; Visualization, R.L., M.A.-H., Z.L., and J.I.; Funding Acquisition, J.I.; Supervision, J.I.; Project Administration, J.I.

                Article
                NIHMS1546255
                10.1016/j.celrep.2019.11.042
                6951814
                31825848
                3a33c389-36f8-414f-abf5-3eba6513f7d5

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article