33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The CC-NB-LRR-Type Rdg2a Resistance Gene Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Leaf stripe disease on barley ( Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg ( R esistance to Drechslera graminea ) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the histological bases of Rdg2a-based leaf stripe resistance.

          Principal Findings

          We describe here the positional cloning and functional characterization of the leaf stripe resistance gene Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a-candidates under the control of their native 5′ regulatory sequences identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response, supporting a cell wall reinforcement-based resistance mechanism.

          Conclusions

          This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process.

          Classical genetic and molecular data show that genes determining disease resistance in plants are frequently clustered in the genome. Genes for resistance (R genes) to diverse pathogens cloned from several species encode proteins that have motifs in common. These motifs indicate that R genes are part of signal-transduction systems. Most of these R genes encode a leucine-rich repeat (LRR) region. Sequences encoding putative solvent-exposed residues in this region are hypervariable and have elevated ratios of nonsynonymous to synonymous substitutions; this suggests that they have evolved to detect variation in pathogen-derived ligands. Generation of new resistance specificities previously had been thought to involve frequent unequal crossing-over and gene conversions. However, comparisons between resistance haplotypes reveal that orthologs are more similar than paralogs implying a low rate of sequence homogenization from unequal crossing-over and gene conversion. We propose a new model adapted and expanded from one proposed for the evolution of vertebrate major histocompatibility complex and immunoglobulin gene families. Our model emphasizes divergent selection acting on arrays of solvent-exposed residues in the LRR resulting in evolution of individual R genes within a haplotype. Intergenic unequal crossing-over and gene conversions are important but are not the primary mechanisms generating variation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene.

            NBS-LRR genes are the major class of disease resistance genes in flowering plants, and are arranged as single genes and as clustered loci. The evolution of these genes has been investigated in Arabidopsis thaliana by combining data on their genomic organisation and position in phylogenetic trees. Tandem and segmental duplications distribute and separate NBS-LRR genes in the genome. It is, however, unclear by which mechanism(s) NBS-LRR genes from different clades are sampled into heterogeneous clusters. Once physically removed from their closest relatives, the NBS-LRR genes might adopt and preserve new specificities because they are less prone to sequence homogenization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses.

              Plant immune responses are triggered by pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs) or by resistance (R) proteins recognizing isolate-specific pathogen effectors. We show that in barley, intracellular mildew A (MLA) R proteins function in the nucleus to confer resistance against the powdery mildew fungus. Recognition of the fungal avirulence A10 effector by MLA10 induces nuclear associations between receptor and WRKY transcription factors. The identified WRKY proteins act as repressors of PAMP-triggered basal defense. MLA appears to interfere with the WRKY repressor function, thereby de-repressing PAMP-triggered basal defense. Our findings reveal a mechanism by which these polymorphic immune receptors integrate distinct pathogen signals.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                10 September 2010
                : 5
                : 9
                : e12599
                Affiliations
                [1 ]Genomic Research Center, CRA-GPG, Fiorenzuola d'Arda, Italy
                [2 ]Department of Plant Microbe Interactions, Max Planck Institute für Züchtungsforschung, Köln, Germany
                [3 ]Australian Centre for Plant Functional Genomics, School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, Australia
                [4 ]DiPROVE, University of Milan, Milano, Italy
                Ecole Normale Superieure, France
                Author notes

                Conceived and designed the experiments: DB CB NCC PSL GV. Performed the experiments: DB CB GC GV. Analyzed the data: DB CB GV. Wrote the paper: DB CB NCC AMS PSL GV.

                Article
                10-PONE-RA-19259R1
                10.1371/journal.pone.0012599
                2937021
                20844752
                3a23d112-ad66-4759-a88b-8a6dd1ed3977
                Bulgarelli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 May 2010
                : 12 August 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Plant Biology/Plant Genetics and Gene Expression
                Plant Biology/Plant Genomes and Evolution
                Plant Biology/Plant-Biotic Interactions

                Uncategorized
                Uncategorized

                Comments

                Comment on this article