93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Raman Fingerprint of Graphene

          Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene's electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            High yield production of graphene by liquid phase exfoliation of graphite

            Graphene is at the centre of nanotechnology research. In order to fully exploit its outstanding properties, a mass production method is necessary. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to ~0.01 mg/ml by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This occurs because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energy matches that of graphene. We confirm the presence of individual graphene sheets with yields of up to 12% by mass, using absorption spectroscopy, transmission electron microscopy and electron diffraction. The absence of defects or oxides is confirmed by X-ray photoelectron, infra-red and Raman spectroscopies. We can produce conductive, semi-transparent films and conductive composites. Solution processing of graphene opens up a whole range of potential large-scale applications from device or sensor fabrication to liquid phase chemistry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites.

              Monitoring of human bodily motion requires wearable sensors that can detect position, velocity and acceleration. They should be cheap, lightweight, mechanically compliant and display reasonable sensitivity at high strains and strain rates. No reported material has simultaneously demonstrated all the above requirements. Here we describe a simple method to infuse liquid-exfoliated graphene into natural rubber to create conducting composites. These materials are excellent strain sensors displaying 10(4)-fold increases in resistance and working at strains exceeding 800%. The sensitivity is reasonably high, with gauge factors of up to 35 observed. More importantly, these sensors can effectively track dynamic strain, working well at vibration frequencies of at least 160 Hz. At 60 Hz, we could monitor strains of at least 6% at strain rates exceeding 6000%/s. We have used these composites as bodily motion sensors, effectively monitoring joint and muscle motion as well and breathing and pulse.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                December 08 2016
                December 08 2016
                : 354
                : 6317
                : 1257-1260
                Article
                10.1126/science.aag2879
                27940866
                3a0e6c6c-e2ee-4fe5-a07d-8bd6f1093979
                © 2016

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article