4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interpretation and Visualization Techniques for Deep Learning Models in Medical Imaging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deep learning approaches to medical image analysis tasks have recently become popular; however, they suffer from a lack of human interpretability critical for both increasing understanding of the methods’ operation and enabling clinical translation. This review summarizes currently available methods for performing image model interpretation and critically evaluates published uses of these methods for medical imaging applications. We divide model interpretation in two categories: (1) understanding model structure and function and (2) understanding model output. Understanding model structure and function summarizes ways to inspect the learned features of the model and how those features act on an image. We discuss techniques for reducing the dimensionality of high-dimensional data and cover autoencoders, both of which can also be leveraged for model interpretation. Understanding model output covers attribution-based methods, such as saliency maps and class activation maps, which produce heatmaps describing the importance of different parts of an image to the model prediction. We describe the mathematics behind these methods, give examples of their use in medical imaging, and compare them against one another. We summarize several published toolkits for model interpretation specific to medical imaging applications, cover limitations of current model interpretation methods, provide recommendations for deep learning practitioners looking to incorporate model interpretation into their task, and offer general discussion on the importance of model interpretation in medical imaging contexts.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          A survey on deep learning in medical image analysis

          Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A survey on Image Data Augmentation for Deep Learning

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning

              Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.
                Bookmark

                Author and article information

                Journal
                0401220
                6459
                Phys Med Biol
                Phys Med Biol
                Physics in medicine and biology
                0031-9155
                1361-6560
                18 June 2021
                02 February 2021
                02 February 2021
                27 June 2021
                : 66
                : 4
                : 04TR01
                Affiliations
                [1 ] Department of Medical Physics, University of Wisconsin-Madison, Madison WI
                [2 ] Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
                Author notes
                [* ]Correspondence should be addressed to: Wisconsin Institutes for Medical Research, 1111 Highland Ave, Room 1005, Madison, WI 53705. Tel: 608-263-8619; Fax: 608-262-2413, Corresponding author: Robert Jeraj, PhD; Department of Medical Physics; rjeraj@ 123456wisc.edu
                Article
                NIHMS1711232
                10.1088/1361-6560/abcd17
                8236074
                33227719
                3a06b67a-18bb-4cff-93f9-27147ed8f7c3

                After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

                History
                Categories
                Article

                deep learning,medical imaging,interpretation,visualization,saliency,review

                Comments

                Comment on this article