4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Saethre–Chotzen syndrome: long‐term outcome of a syndrome‐specific management protocol

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          To assess the long‐term outcomes of our management protocol for Saethre–Chotzen syndrome, which includes one‐stage fronto‐orbital advancement.

          Method

          All patients born with Saethre–Chotzen syndrome between January 1992 and March 2017 were included. Evaluated parameters included occipital frontal head circumference (OFC), fundoscopy, neuroimaging (ventricular size, tonsillar position, and the presence of collaterals/an abnormal transverse sinus), polysomnography, and ophthalmological outcomes. The relationship between papilledema and its associated risk factors was evaluated with Fisher’s exact test.

          Results

          Thirty‐two patients (21 females, 11 males) were included. Median (SD) age at first surgery was 9.6 months (3.1mo) for patients who were primarily referred to our center (range: 3.6–13.0mo), the median (SD) age at last follow‐up was 13 years (5y 7mo; range: 3–25y). Seven patients had papilledema preoperatively, which recurred in two. Two patients had papilledema solely after first surgery. Second cranial vault expansion was indicated in 20%. Thirteen patients had an OFC deflection, indicating restricted skull growth, one patient had ventriculomegaly, and none developed hydrocephalus. Eleven patients had emissary veins, while the transverse sinus was aberrant unilaterally in 13 (hypoplastic n=10 and absent n=3). Four patients had mild tonsillar descent, one of which was a Chiari type I malformation. Four patients had obstructive sleep apnoea (two mild, one moderate, and one severe). An aberrant transverse sinus was associated with papilledema ( p=0.01).

          Interpretation

          Single one‐stage fronto‐orbital advancement was sufficient to prevent intracranial hypertension for 80% of our patients with Saethre–Chotzen syndrome. Follow‐up should focus on OFC deflection and venous anomalies.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine.

          The American Academy of Sleep Medicine (AASM) Sleep Apnea Definitions Task Force reviewed the current rules for scoring respiratory events in the 2007 AASM Manual for the Scoring and Sleep and Associated Events to determine if revision was indicated. The goals of the task force were (1) to clarify and simplify the current scoring rules, (2) to review evidence for new monitoring technologies relevant to the scoring rules, and (3) to strive for greater concordance between adult and pediatric rules. The task force reviewed the evidence cited by the AASM systematic review of the reliability and validity of scoring respiratory events published in 2007 and relevant studies that have appeared in the literature since that publication. Given the limitations of the published evidence, a consensus process was used to formulate the majority of the task force recommendations concerning revisions.The task force made recommendations concerning recommended and alternative sensors for the detection of apnea and hypopnea to be used during diagnostic and positive airway pressure (PAP) titration polysomnography. An alternative sensor is used if the recommended sensor fails or the signal is inaccurate. The PAP device flow signal is the recommended sensor for the detection of apnea, hypopnea, and respiratory effort related arousals (RERAs) during PAP titration studies. Appropriate filter settings for recording (display) of the nasal pressure signal to facilitate visualization of inspiratory flattening are also specified. The respiratory inductance plethysmography (RIP) signals to be used as alternative sensors for apnea and hypopnea detection are specified. The task force reached consensus on use of the same sensors for adult and pediatric patients except for the following: (1) the end-tidal PCO(2) signal can be used as an alternative sensor for apnea detection in children only, and (2) polyvinylidene fluoride (PVDF) belts can be used to monitor respiratory effort (thoracoabdominal belts) and as an alternative sensor for detection of apnea and hypopnea (PVDFsum) only in adults.The task force recommends the following changes to the 2007 respiratory scoring rules. Apnea in adults is scored when there is a drop in the peak signal excursion by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative apnea sensor, for ≥ 10 seconds. Hypopnea in adults is scored when the peak signal excursions drop by ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ 10 seconds in association with either ≥ 3% arterial oxygen desaturation or an arousal. Scoring a hypopnea as either obstructive or central is now listed as optional, and the recommended scoring rules are presented. In children an apnea is scored when peak signal excursions drop by ≥ 90% of pre-event baseline using an oronasal thermal sensor (diagnostic study), PAP device flow (titration study), or an alternative sensor; and the event meets duration and respiratory effort criteria for an obstructive, mixed, or central apnea. A central apnea is scored in children when the event meets criteria for an apnea, there is an absence of inspiratory effort throughout the event, and at least one of the following is met: (1) the event is ≥ 20 seconds in duration, (2) the event is associated with an arousal or ≥ 3% oxygen desaturation, (3) (infants under 1 year of age only) the event is associated with a decrease in heart rate to less than 50 beats per minute for at least 5 seconds or less than 60 beats per minute for 15 seconds. A hypopnea is scored in children when the peak signal excursions drop is ≥ 30% of pre-event baseline using nasal pressure (diagnostic study), PAP device flow (titration study), or an alternative sensor, for ≥ the duration of 2 breaths in association with either ≥ 3% oxygen desaturation or an arousal. In children and adults, surrogates of the arterial PCO(2) are the end-tidal PCO(2) or transcutaneous PCO(2) (diagnostic study) or transcutaneous PCO(2) (titration study). For adults, sleep hypoventilation is scored when the arterial PCO(2) (or surrogate) is > 55 mm Hg for ≥ 10 minutes or there is an increase in the arterial PCO(2) (or surrogate) ≥ 10 mm Hg (in comparison to an awake supine value) to a value exceeding 50 mm Hg for ≥ 10 minutes. For pediatric patients hypoventilation is scored when the arterial PCO(2) (or surrogate) is > 50 mm Hg for > 25% of total sleep time. In adults Cheyne-Stokes breathing is scored when both of the following are met: (1) there are episodes of ≥ 3 consecutive central apneas and/or central hypopneas separated by a crescendo and decrescendo change in breathing amplitude with a cycle length of at least 40 seconds (typically 45 to 90 seconds), and (2) there are five or more central apneas and/or central hypopneas per hour associated with the crescendo/decrescendo breathing pattern recorded over a minimum of 2 hours of monitoring.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome.

            Saethre-Chotzen syndrome is one of the most common autosomal dominant disorders of craniosynostosis in humans and is characterized by craniofacial and limb anomalies. The locus for Saethre-Chotzen syndrome maps to chromosome 7p21-p22. We have evaluated TWIST, a basic helix-loop-helix transcription factor, as a candidate gene for this condition because its expression pattern and mutant phenotypes in Drosophila and mouse are consistent with the Saethre-Chotzen phenotype. We mapped TWIST to human chromosome 7p21-p22 and mutational analysis reveals nonsense, missense, insertion and deletion mutations in patients. These mutations occur within the basic DNA binding, helix I and loop domains, or result in premature termination of the protein. Studies in Drosophila indicate that twist may affect the transcription of fibroblast growth factor receptors (FGFRs), another gene family implicated in human craniosynostosis. The emerging cascade of molecular components involved in craniofacial and limb development now includes TWIST, which may function as an upstream regulator of FGFRs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Increase of prevalence of craniosynostosis

                Bookmark

                Author and article information

                Contributors
                b.denottelander@erasmusmc.nl
                Journal
                Dev Med Child Neurol
                Dev Med Child Neurol
                10.1111/(ISSN)1469-8749
                DMCN
                Developmental Medicine and Child Neurology
                John Wiley and Sons Inc. (Hoboken )
                0012-1622
                1469-8749
                09 September 2020
                January 2021
                : 63
                : 1 ( doiID: 10.1111/dmcn.v63.1 )
                : 104-110
                Affiliations
                [ 1 ] Department of Plastic and Reconstructive Surgery and Hand Surgery Dutch Craniofacial Center Erasmus MC – Sophia Children’s Hospital University Medical Center Rotterdam Rotterdam the Netherlands
                [ 2 ] Department of Neurosurgery Erasmus MC – Sophia Children’s Hospital University Medical Center Rotterdam Rotterdam the Netherlands
                [ 3 ] Department of Radiology Erasmus MC – Sophia Children’s Hospital University Medical Center Rotterdam Rotterdam the Netherlands
                [ 4 ] Department of Ophthalmology Erasmus MC – Sophia Children’s Hospital University Medical Center Rotterdam Rotterdam the Netherlands
                [ 5 ] Department of Clinical Genetics Erasmus MC – Sophia Children’s Hospital University Medical Center Rotterdam Rotterdam the Netherlands
                [ 6 ] Pediatric Intensive Care Unit Erasmus MC – Sophia Children’s Hospital University Medical Center Rotterdam Rotterdam the Netherlands
                Author notes
                [*] [* ] Correspondence to Bianca K den Ottelander, Dutch Craniofacial Center, Sophia Children’s Hospital – Erasmus University Medical Center, Wytemaweg 80, 2015 CN Rotterdam, the Netherlands. E‐mail: b.denottelander@ 123456erasmusmc.nl

                Author information
                https://orcid.org/0000-0002-4586-0317
                Article
                DMCN14670
                10.1111/dmcn.14670
                7754116
                32909287
                39dad733-d42d-4132-8932-1bc4b78c3e3e
                © 2020 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 04 August 2020
                Page count
                Figures: 0, Tables: 2, Pages: 7, Words: 5560
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                January 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.9.6 mode:remove_FC converted:22.12.2020

                Neurology
                Neurology

                Comments

                Comment on this article