11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cell cycle inhibition mediated by the outer surface of the C/EBPalpha basic region is required but not sufficient for granulopoiesis.

      Oncogene
      Animals, Antineoplastic Agents, pharmacology, CCAAT-Enhancer-Binding Protein-alpha, drug effects, physiology, COS Cells, Cell Cycle, Cell Differentiation, Granulocytes, Mice, Mimosine

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CCAAT/enhancer binding protein alpha (C/EBPalpha) transactivates target genes dependent upon DNA binding via its basic region-leucine zipper domain and slows G1 progression by interaction with E2F, cdk2, or cdk4. E2F interacts with the non-DNA-binding surface of the C/EBPalpha basic region and C/EBPalpha residues 1-70 are required for repressing E2F targets, while cdk2 and cdk4 bind residues 177-191. C/EBPalpha-ER induces the 32D cl3 myeloblast cell line to differentiate to granulocytes. C/EBPalpha-ER variants incapable of binding DNA slowed G1, but did not induce early or late granulopoiesis, indicating that cell cycle inhibition as mediated by C/EBPalpha is not sufficient for differentiation. C/EBPalpha-ER variants lacking residues 11-70 or residues 11-70 and 178-200 both slowed the G1 to S transition. C/EBPalpha(GZ)-ER, containing the GCN4 rather than the C/EBPalpha leucine zipper, also slowed G1. In contrast, C/EBPalpha(BRM2)-ER, carrying mutations in the outer surface of the basic region required for interaction with E2F, did not slow G1. C/EBPalpha(BRM2)-ER induced early markers of granulopoiesis much less efficiently than C/EBPalpha-ER and did not direct terminal maturation. Inhibition of G1 progression using mimosine increased induction of late markers by G-CSF. Thus, both DNA binding and cell cycle arrest, mediated by opposite surfaces of the C/EBPalpha basic region, are required for granulopoiesis.

          Related collections

          Author and article information

          Comments

          Comment on this article