1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tannic acid-stabilized pericardium tissue: IR spectroscopy, atomic force microscopy, and dielectric spectroscopy investigations.

      Journal of Biomedical Materials Research. Part a
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infrared (IR) spectroscopy, atomic force microscopy (AFM), and dielectric spectroscopy methods were employed to study structural and dynamic changes in the tannic acid (TA)-stabilized pericardium tissue. Chemically stabilized pericardium tissue is widely used in construction of the tissue derived bioprostheses. IR spectra recorded in the range 400-4000 cm-1 allowed us to recognize different types of TA-collagen interactions. Formation of hydrogen bonds between amine as well as amide NH groups from collagen and hydroxyl groups of TA was analyzed. The AFM imaging showed that the stabilization procedure with TA introduces considerable changes in both surface topography and thickness of collagen fibrils as well as in fibril arrangement on the tissue surface. It was found, that these structural changes have an impact on the dielectric behavior of the TA-stabilized tissue. The dielectric spectra for the native and TA-stabilized tissues were measured in the frequency and temperature ranges of 10(-1) -10(7) Hz and 120-270 K, respectively. The dielectric spectra revealed the relaxation process due to orientation of bound water supplemented by the fluctuation of collagen polar side groups. At the temperatures above approximately 210 K, the relaxation due to ion migration process was observed. It was found that both relaxation processes were influenced by the TA-collagen interaction.

          Related collections

          Author and article information

          Journal
          16619255
          10.1002/jbm.a.30717

          Comments

          Comment on this article

          scite_