2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Copper induces microglia-mediated neuroinflammation through ROS/NF-κB pathway and mitophagy disorder

      , , , , , ,
      Food and Chemical Toxicology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Parkinson's disease.

          Parkinson's disease is a neurological disorder with evolving layers of complexity. It has long been characterised by the classical motor features of parkinsonism associated with Lewy bodies and loss of dopaminergic neurons in the substantia nigra. However, the symptomatology of Parkinson's disease is now recognised as heterogeneous, with clinically significant non-motor features. Similarly, its pathology involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates other than just Lewy bodies. The cause of Parkinson's disease remains unknown, but risk of developing Parkinson's disease is no longer viewed as primarily due to environmental factors. Instead, Parkinson's disease seems to result from a complicated interplay of genetic and environmental factors affecting numerous fundamental cellular processes. The complexity of Parkinson's disease is accompanied by clinical challenges, including an inability to make a definitive diagnosis at the earliest stages of the disease and difficulties in the management of symptoms at later stages. Furthermore, there are no treatments that slow the neurodegenerative process. In this Seminar, we review these complexities and challenges of Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Copper induces cell death by targeting lipoylated TCA cycle proteins

            Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration. We show that copper-dependent death occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle. This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. These findings may explain the need for ancient copper homeostatic mechanisms. Cell death is an essential, finely tuned process that is critical for the removal of damaged and superfluous cells. Multiple forms of programmed and nonprogrammed cell death have been identified, including apoptosis, ferroptosis, and necroptosis. Tsvetkov et al . investigated whether abnormal copper ion elevations may sensitize cells toward a previously unidentified death pathway (see the Perspective by Kahlson and Dixon). By performing CRISPR/Cas9 screens, several genes were identified that could protect against copper-induced cell killing. Using genetically modified cells and a mouse model of a copper overload disorder, the researchers report that excess copper promotes the aggregation of lipoylated proteins and links mitochondrial metabolism to copper-dependent death. —PNK Lipoylation determines sensitivity to copper-induced cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fate mapping analysis reveals that adult microglia derive from primitive macrophages.

              Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor-deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                Food and Chemical Toxicology
                Food and Chemical Toxicology
                Elsevier BV
                02786915
                October 2022
                October 2022
                : 168
                : 113369
                Article
                10.1016/j.fct.2022.113369
                35985369
                39815b1e-ccbd-4f2e-b6a5-fd36dbfcbada
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article