3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Photodynamic therapy: Promoting in vitro efficacy of photodynamic therapy by liposomal formulations of a photosensitizing agent : LIPOSOMAL PDT TARGETING

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A relatively low level of lysosomal photodamage has been shown capable of promoting the efficacy of photodamage simultaneously or subsequently directed to mitochondrial/ER sites. The procedure has hitherto involved the use of two photosensitizing agents that require irradiation at two different wavelengths and different formulation techniques. This, together with different pharmacokinetic profiles of the photosensitizers, adds a layer of complexity to a protocol that we have sought to circumvent. In this study, liposomal formulations were used to direct photodamage created by benzoporphyrin derivative (BPD, Verteporfin) to lysosomes, mitochondria and the ER. This resulted in the development of an optimal targeting profile using a single agent and a single wavelength of activating irradiation. These studies were carried out in monolayer cultures of OVCAR5 tumor cells. BPD localization was modified by lipid anchoring and formulation in liposomes, and was assessed by fluorescence microscopy. Irradiation was carried out at 690±10 nm with photodamage assessed also using fluorescent probes and microscopy. BPD normally localizes in a wide variety of sub-cellular loci that include both mitochondria and the ER, but lysosomes are spared from photodamage. Using a liposomal formulation containing BPD anchored to a lipid resulted in the targeting of lysosomes. A mixture of liposomes containing “free” and “anchored” BPD was shown to significantly promote photokilling. Eliminating cholesterol from the formulation of the anchored product enhanced lysosomal photodamage; prior studies had revealed that excess cholesterol can have a cytoprotective effect when lysosomes are the PDT target. The ability of a liposomal formulation to change localization patterns permits directing photodynamic therapy toward specific sub-cellular loci, thereby promoting photokilling. Incorporating chemotherapeutic agents into such formulations could represent a logical next step in assessing the ability of directed photodamage to enhance tumor eradication. Lasers Surg. Med. 50:499–505, 2018. © 2018 Wiley Periodicals, Inc.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis, autophagy, and more.

          Cell death has been subdivided into the categories apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). The boundary between Type I and II has never been completely clear and perhaps does not exist due to intrinsic factors among different cell types and the crosstalk among organelles within each type. Apoptosis can begin with autophagy, autophagy can end with apoptosis, and blockage of caspase activity can cause a cell to default to Type II cell death from Type I. Furthermore, autophagy is a normal physiological process active in both homeostasis (organelle turnover) and atrophy. "Autophagic cell death" may be interpreted as the process of autophagy that, unlike other situations, does not terminate before the cell collapses. Since switching among the alternative pathways to death is relatively common, interpretations based on knockouts or inhibitors, and therapies directed at controlling apoptosis must include these considerations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix.

            Programmed cell death (pcd) may take the form of apoptotic or nonapoptotic pcd. Whereas cysteine aspartyl-specific proteases (caspases) mediate apoptosis, the mediators of nonapoptotic cell death programs are much less well characterized. Here, we report that paraptosis, an alternative, nonapoptotic cell death program that may be induced by the insulin-like growth factor I receptor (among other inducers), is mediated by mitogen-activated protein kinases (MAPKs) and inhibited by AIP-1/Alix. The inhibition by AIP-1/Alix is specific for paraptosis since apoptosis was not inhibited. Caspases were not activated in this paradigm, nor were caspase inhibitors effective in blocking cell death. However, insulin-like growth factor I receptor (IGFIR)-induced paraptosis was inhibited by MEK-2-specific inhibitors and by antisense oligonucleotides directed against c-jun N-terminal kinase-1 (JNK-1). These results suggest that IGFIR-induced paraptosis is mediated by MAPKs, and inhibited by AIP-1/Alix.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage.

              Photodynamic therapy (PDT) protocols employing lysosomal sensitizers induce apoptosis via a mechanism that causes cytochrome c release prior to loss of mitochondrial membrane potential (DeltaPsi(m)). The current study was designed to determine how lysosomal photodamage initiates mitochondrial-mediated apoptosis in murine hepatoma 1c1c7 cells. Fluorescence microscopy demonstrated that the photosensitizer N-aspartyl chlorin e6 (NPe6) localized to the lysosomes. Irradiation of cultures preloaded with NPe6 induced the rapid destruction of lysosomes, and subsequent cleavage/activation of Bid, pro-caspases-9 and -3. Pro-caspase-8 was not activated. Release of cytochrome c occurred at about the time of Bid cleavage and preceded the loss of DeltaPsi(m). Extracts of purified lysosomes catalyzed the in vitro cleavage of cytosolic Bid, but not pro-caspase-3 activation. Pharmacological inhibition of cathepsin B, L and D activities did not suppress Bid cleavage or pro-caspases-9 and -3 activation. These studies demonstrate that photodamaged lysosomes trigger the mitochondrial apoptotic pathway by releasing proteases that activate Bid.
                Bookmark

                Author and article information

                Journal
                Lasers in Surgery and Medicine
                Lasers Surg. Med.
                Wiley
                01968092
                July 2018
                July 2018
                March 11 2018
                : 50
                : 5
                : 499-505
                Affiliations
                [1 ]Wellman Center for Photomedicine; Massachusetts General Hospital and Harvard Medical School; Boston Massachusetts 02114
                [2 ]Department of Pharmacology; Wayne State University School of Medicine; Detroit Michigan 48201
                Article
                10.1002/lsm.22813
                7449601
                29527710
                396c8b3e-9620-4c7c-8059-dfee113df1a8
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article