19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Uromodulin-related autosomal-dominant tubulointerstitial kidney disease—pathogenetic insights based on a case

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Uromodulin-related autosomal-dominant tubulointerstitial kidney disease (ADTKD-UMOD) is a rare monogenic disorder that is characterized by tubulointerstitial fibrosis and progression of kidney function loss, and may progress to end-stage renal disease. It is usually accompanied by hyperuricaemia and gout. Mutations in the uromodulin gene ( UMOD) resulting in malfunctioning of UMOD are known to be the cause of ADTKD-UMOD, which is assumed to be an endoplasmatic reticulum (ER) storage disease. As a case vignette, we report a 29-year-old female with a suspicious family history of chronic kidney disease presenting with progressive loss of renal function, hyperuricaemia and frequent urinary tract infections. Urinary tract infections and pyelonephritides may represent a clinical feature of uromodulin malfunction as it plays a protective role against urinary tract infections despite only sporadic data on this topic. ADTKD-UMOD was diagnosed after genetic testing revealing a missense mutation in the UMOD gene. Light microscopy showed excessive tubular interstitial fibrosis and tubular atrophy together with signs of glomerular sclerosis. Electron microscopic findings could identify electron dense storage deposits in the ER of tubular epithelial cells of the thick ascending loop. Immunohistological staining with KDEL (lysine, aspartic acid, glutamic acid, leucine) showed positivity in the tubular cells, which likely represents ER expansion upon accumulation of misfolded UMOD which could trigger the unfolded protein response and ER stress. This review highlights pathophysiological mechanisms that are subject to ADTKD-UMOD.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress.

          The accumulation of unfolded proteins elicits a cellular response that triggers both pro-survival and pro-apoptotic signaling events. PERK-dependent activation of NF-E2-related factor-2 (Nrf2) is critical for survival signaling during this response; however, the mechanism whereby Nrf2 confers a protective advantage to stressed cells remains to be defined. We now demonstrate that Nrf2 activation contributes to the maintenance of glutathione levels, which in turn functions as a buffer for the accumulation of reactive oxygen species during the unfolded protein response. The deleterious effects of Nrf2 or PERK deficiencies could be attenuated by the restoration of cellular glutathione levels or Nrf2 activity. In addition, the inhibition of reactive oxygen species production attenuated apoptotic induction following endoplasmic reticulum stress. Our data suggest that perturbations in cellular redox status sensitize cells to the harmful effects of endoplasmic reticulum stress, but that other factors are essential for apoptotic commitment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy.

            Medullary cystic kidney disease 2 (MCKD2) and familial juvenile hyperuricaemic nephropathy (FJHN) are both autosomal dominant renal diseases characterised by juvenile onset of hyperuricaemia, gout, and progressive renal failure. Clinical features of both conditions vary in presence and severity. Often definitive diagnosis is possible only after significant pathology has occurred. Genetic linkage studies have localised genes for both conditions to overlapping regions of chromosome 16p11-p13. These clinical and genetic findings suggest that these conditions may be allelic. To identify the gene and associated mutation(s) responsible for FJHN and MCKD2. Two large, multigenerational families segregating FJHN were studied by genetic linkage and haplotype analyses to sublocalise the chromosome 16p FJHN gene locus. To permit refinement of the candidate interval and localisation of candidate genes, an integrated physical and genetic map of the candidate region was developed. DNA sequencing of candidate genes was performed to detect mutations in subjects affected with FJHN (three unrelated families) and MCKD2 (one family). We identified four novel uromodulin (UMOD) gene mutations that segregate with the disease phenotype in three families with FJHN and in one family with MCKD2. These data provide the first direct evidence that MCKD2 and FJHN arise from mutation of the UMOD gene and are allelic disorders. UMOD is a GPI anchored glycoprotein and the most abundant protein in normal urine. We postulate that mutation of UMOD disrupts the tertiary structure of UMOD and is responsible for the clinical changes of interstitial renal disease, polyuria, and hyperuricaemia found in MCKD2 and FJHN.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial.

              Asymptomatic hyperuricemia increases renal and cardiovascular (CV) risk. We previously conducted a 2-year, single-blind, randomized, controlled trial of allopurinol treatment that showed improved estimated glomerular filtration rate and reduced CV risk.
                Bookmark

                Author and article information

                Journal
                Clin Kidney J
                Clin Kidney J
                ckj
                Clinical Kidney Journal
                Oxford University Press
                2048-8505
                2048-8513
                April 2019
                12 November 2018
                12 November 2018
                : 12
                : 2
                : 172-179
                Affiliations
                [1 ]Department of Internal Medicine III, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
                [2 ]Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
                Author notes
                Correspondence and offprint requests to: Martin Busch; E-mail: martin.busch@ 123456med.uni-jena.de
                Article
                sfy094
                10.1093/ckj/sfy094
                6452205
                30976393
                395f49cd-bd7d-438d-b386-931d58cd6965
                © The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 17 May 2018
                Page count
                Pages: 8
                Categories
                Genetic Kidney Disease

                Nephrology
                adtkd-umod,hyperuricaemia,tubulointerstitial chronic kidney disease,urinary tract infection,uromodulin

                Comments

                Comment on this article