15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantum Simulation of the Ultrastrong Coupling Dynamics in Circuit QED

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose a method to get experimental access to the physics of the ultrastrong (USC) and deep strong (DSC) coupling regimes of light-matter interaction through the quantum simulation of their dynamics in standard circuit QED. The method makes use of a two-tone driving scheme, using state-of-the-art circuit-QED technology, and can be easily extended to general cavity-QED setups. We provide examples of USC/DSC quantum effects that would be otherwise unaccessible.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: not found
          • Article: not found

          Manipulating quantum entanglement with atoms and photons in a cavity

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation

            We propose a realizable architecture using one-dimensional transmission line resonators to reach the strong coupling limit of cavity quantum electrodynamics in superconducting electrical circuits. The vacuum Rabi frequency for the coupling of cavity photons to quantized excitations of an adjacent electrical circuit (qubit) can easily exceed the damping rates of both the cavity and the qubit. This architecture is attractive both as a macroscopic analog of atomic physics experiments and for quantum computing and control, since it provides strong inhibition of spontaneous emission, potentially leading to greatly enhanced qubit lifetimes, allows high-fidelity quantum non-demolition measurements of the state of multiple qubits, and has a natural mechanism for entanglement of qubits separated by centimeter distances. In addition it would allow production of microwave photon states of fundamental importance for quantum communication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthesizing arbitrary quantum states in a superconducting resonator.

              The superposition principle is a fundamental tenet of quantum mechanics. It allows a quantum system to be 'in two places at the same time', because the quantum state of a physical system can simultaneously include measurably different physical states. The preparation and use of such superposed states forms the basis of quantum computation and simulation. The creation of complex superpositions in harmonic systems (such as the motional state of trapped ions, microwave resonators or optical cavities) has presented a significant challenge because it cannot be achieved with classical control signals. Here we demonstrate the preparation and measurement of arbitrary quantum states in an electromagnetic resonator, superposing states with different numbers of photons in a completely controlled and deterministic manner. We synthesize the states using a superconducting phase qubit to phase-coherently pump photons into the resonator, making use of an algorithm that generalizes a previously demonstrated method of generating photon number (Fock) states in a resonator. We completely characterize the resonator quantum state using Wigner tomography, which is equivalent to measuring the resonator's full density matrix.
                Bookmark

                Author and article information

                Journal
                28 July 2011
                2012-05-28
                Article
                10.1103/PhysRevX.2.021007
                1107.5748
                393d8377-402e-4259-829b-41fc7f6e8d49

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. X 2, 021007 (2012)
                Final version published in PRX
                quant-ph cond-mat.mes-hall cond-mat.supr-con

                Comments

                Comment on this article