4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Photocatalytic Unsymmetrical Diamination of Styrenes, Indoles, and Benzofurans Facilitated by Benzotriazolyl and Iminyl Radicals

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          An Electrocatalytic Approach to the Radical Difunctionalization of Alkenes

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.

            ConspectusNitrogen-centered radicals (NCRs) are a versatile class of highly reactive species that have a longer history than the classical carbon-based radicals in synthetic chemistry. Depending on the N-hybridization and substitution patterns, NCRs can serve as electrophiles or nucleophiles to undergo various radical transformations. Despite their power, progress in nitrogen-radical chemistry is still slow compared with the popularity of carbon radicals, and their considerable synthetic potential has been largely underexplored, which is, as concluded by Zard, mainly hampered by "a dearth of convenient access to these species and a lack of awareness pertaining to their reactivity".Over the past decade, visible-light photoredox catalysis has been established as a powerful toolbox that synthetic chemists can use to generate a diverse range of radical intermediates from native organic functional groups via a single electron transfer process or energy transfer under mild reaction conditions. This catalytic strategy typically obviates the need for external stoichiometric activation reagents or toxic initiators and often enables traditionally inaccessible ionic chemical reactions. On the basis of our long-standing interest in nitrogen chemistry and catalysis, we have emphasized the use of visible-light photoredox catalysis as a tactic to discover and develop novel methods for generating NCRs in a controlled fashion and synthetic applications. In this Account, we describe our recent advances in the development of visible-light-driven photoredox-catalyzed generation of NCRs and their synthetic applications.Inspired by the natural biological proton-coupled electron transfer (PCET) process, we first developed a strategy of visible-light-driven photoredox-catalyzed oxidative deprotonation electron transfer to activate the N-H bonds of hydrazones, benzamides, and sulfonamides to give the corresponding NCRs under mild reaction conditions. With these reactive species, we then achieved a range of 5-exo and 6-endo radical cyclizations as well as cascade reactions in a highly regioselective manner, providing access to a variety of potentially useful nitrogen heterocycles. To further expand the repertoire of possible reactions of NCRs, we also revealed that iminyl radicals, derived from O-acyl cycloalkanone oxime esters, can undergo facile ring-opening C-C bond cleavage to give cyanoalkyl radicals. These newly formed radical species can further undergo a variety of C-C bond-forming reactions to allow the synthesis of diverse distally functionalized alkyl nitriles. Stimulated by these studies, we further developed a wide variety of visible-light-driven copper-catalyzed radical cross-coupling reactions of cyanoalkyl radicals. Because of their inherent highly reactive and transient properties, the strategy of heteroatom-centered radical catalysis is still largely underexplored in organic synthesis. Building on our understanding of the fundamental chemistry of NCRs, we also developed for the first time the concept of NCR covalent catalysis, which involves the use of in situ-photogenerated NCRs to activate allyl sulfones, vinylcyclopropanes, and N-tosyl vinylaziridines. This catalytic strategy has thus enabled efficient difunctionalization of various alkenes and late-stage modification of complex biologically active molecules.In this Account, we describe a panoramic picture of our recent contributions since 2014 to the development and application of the visible-light-driven photoredox systems in the field of NCR chemistry. These studies provide not only efficient methods for the synthesis of functionally rich molecules but also some insight into the exploration of new reactivity or reaction modes of NCRs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome coronavirus

              The papain-like protease of severe acute respiratory syndrome coronavirus (PLpro) (EC 3.4.22.46) is essential for the viral life cycle and therefore represents an important antiviral target. We have identified 6MP and 6TG as reversible and slow-binding inhibitors of SARS-CoV PLpro, which is the first report about small molecule reversible inhibitors of PLpro. The inhibition mechanism was investigated by kinetic measurements and computer docking. Both compounds are competitive, selective, and reversible inhibitors of the PLpro with K is values ∼10 to 20 μM. A structure–function relationship study has identified the thiocarbonyl moiety of 6MP or 6TG as the active pharmacophore essential for these inhibitions, which has not been reported before. The inhibition is selective because these compounds do not exert significant inhibitory effects against other cysteine proteases, including SARS-CoV 3CLpro and several cathepsins. Thus, our results present the first potential chemical leads against SARS-CoV PLpro, which might be used as lead compounds for further optimization to enhance their potency against SARS-CoV. Both 6MP and 6TG are still used extensively in clinics, especially for children with acute lymphoblastic or myeloblastic leukemia. In light of the possible inhibition against subset of cysteine proteases, our study has emphasized the importance to study in depth these drug actions in vivo.
                Bookmark

                Author and article information

                Contributors
                Journal
                Organic Letters
                Org. Lett.
                American Chemical Society (ACS)
                1523-7060
                1523-7052
                January 19 2024
                January 09 2024
                January 19 2024
                : 26
                : 2
                : 559-564
                Affiliations
                [1 ]School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
                [2 ]Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong 510091, P. R. China
                [3 ]The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410005, P. R. China
                Article
                10.1021/acs.orglett.3c04148
                392d909c-8341-423f-b998-e13d1b86b572
                © 2024

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article