10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The phage RNA polymerases are related to DNA polymerases and reverse transcriptases

      ,
      Molecular Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The single subunit DNA-dependent RNA polymerase (RNAP) that is encoded by bacteriophage T7 is the prototype of a class of relatively simple RNAPs that includes the RNAPs of the related phages T3 and SP6, as well as the mitochondrial RNAPs. The T7 enzyme has been crystallized, and recent genetic and biochemical analyses have facilitated an interpretation of this structure. A growing body of evidence suggests that the phage-like RNAPs are related to other nucleotide polymerases such as DNA polymerases, RNA-dependent RNA polymerases, and reverse transcriptases. In this work, we review information concerning the structure and function of T7 RNAP, and evidence in support of its assignment to a broader class of nucleotide polymerases.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor.

          A 3.5 angstrom resolution electron density map of the HIV-1 reverse transcriptase heterodimer complexed with nevirapine, a drug with potential for treatment of AIDS, reveals an asymmetric dimer. The polymerase (pol) domain of the 66-kilodalton subunit has a large cleft analogous to that of the Klenow fragment of Escherichia coli DNA polymerase I. However, the 51-kilodalton subunit of identical sequence has no such cleft because the four subdomains of the pol domain occupy completely different relative positions. Two of the four pol subdomains appear to be structurally related to subdomains of the Klenow fragment, including one containing the catalytic site. The subdomain that appears likely to bind the template strand at the pol active site has a different structure in the two polymerases. Duplex A-form RNA-DNA hybrid can be model-built into the cleft that runs between the ribonuclease H and pol active sites. Nevirapine is almost completely buried in a pocket near but not overlapping with the pol active site. Residues whose mutation results in drug resistance have been approximately located.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An attempt to unify the structure of polymerases.

            With the great availability of sequences from RNA- and DNA-dependent RNA and DNA polymerases, it has become possible to delineate a few highly conserved regions for various polymerase types. In this work a DNA polymerase sequence from bacteriophage SPO2 was found to be homologous to the polymerase domain of the Klenow fragment of polymerase I from Escherichia coli, which is known to be closely related to those from Staphylococcus pneumoniae, Thermus aquaticus and bacteriophages T7 and T5. The alignment of the SPO2 polymerase with the other five sequences considerably narrowed the conserved motifs in these proteins. Three of the motifs matched reasonably all the conserved motifs of another DNA polymerase type, characterized by human polymerase alpha. It is also possible to find these three motifs in monomeric DNA-dependent RNA polymerases and two of them in DNA polymerase beta and DNA terminal transferases. These latter two motifs also matched two of the four motifs recently identified in 84 RNA-dependent polymerases. From the known tertiary architecture of the Klenow fragment of E. coli pol I, a spatial arrangement can be implied for these motifs. In addition, numerous biochemical experiments suggesting a role for the motifs in a common function (dNTP binding) also support these inferences. This speculative hypothesis, attempting to unify polymerase structure at least locally, if not globally, under the pol I fold, should provide a useful model to direct mutagenesis experiments to probe template and substrate specificity in polymerases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7.

              Analysis of the nucleotide sequence of the genetic locus for yeast mitochondrial RNA polymerase (RPO41) reveals a continuous open reading frame with the coding potential for a polypeptide of 1351 amino acids, a size consistent with the electrophoretic mobility of this enzymatic activity. The transcription product from this gene spans the singular reading frame. In vivo transcript abundance reflects codon usage and growth under stringent conditions for mitochondrial biogenesis and function results in a several fold higher level of gene expression than growth under glucose repression. A comparison of the yeast mitochondrial RNA polymerase amino acid sequence to those of E. coli RNA polymerase subunits failed to demonstrate any regions of homology. Interestingly, the mitochondrial enzyme is highly homologous to the DNA-directed RNA polymerases of bacteriophages T3 and T7, especially in regions most highly conserved between the T3 and T7 enzymes themselves.
                Bookmark

                Author and article information

                Journal
                Molecular Microbiology
                Mol Microbiol
                Wiley
                0950-382X
                1365-2958
                October 1993
                October 1993
                : 10
                : 1
                : 1-6
                Article
                10.1111/j.1365-2958.1993.tb00897.x
                7526118
                39052b8c-3893-4364-859e-6ee2100ee5be
                © 1993

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article