47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pemphigus: Current and Future Therapeutic Strategies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pemphigus encompasses a heterogeneous group of autoimmune blistering diseases, which affect both mucous membranes and the skin. The disease usually runs a chronic-relapsing course, with a potentially devastating impact on the patients' quality of life. Pemphigus pathogenesis is related to IgG autoantibodies targeting various adhesion molecules in the epidermis, including desmoglein (Dsg) 1 and 3, major components of desmosomes. The pathogenic relevance of such autoantibodies has been largely demonstrated experimentally. IgG autoantibody binding to Dsg results in loss of epidermal keratinocyte adhesion, a phenomenon referred to as acantholysis. This in turn causes intra-epidermal blistering and the clinical appearance of flaccid blisters and erosions at involved sites. Since the advent of glucocorticoids, the overall prognosis of pemphigus has largely improved. However, mortality persists elevated, since long-term use of high dose corticosteroids and adjuvant steroid-sparing immunosuppressants portend a high risk of serious adverse events, especially infections. Recently, rituximab, a chimeric anti CD20 monoclonal antibody which induces B-cell depletion, has been shown to improve patients' survival, as early rituximab use results in higher disease remission rates, long term clinical response and faster prednisone tapering compared to conventional immunosuppressive therapies, leading to its approval as a first line therapy in pemphigus. Other anti B-cell therapies targeting B-cell receptor or downstream molecules are currently tried in clinical studies. More intriguingly, a preliminary study in a preclinical mouse model of pemphigus has shown promise regarding future therapeutic application of Chimeric Autoantibody Receptor T-cells engineered using Dsg domains to selectively target autoreactive B-cells. Conversely, previous studies from our group have demonstrated that B-cell depletion in pemphigus resulted in secondary impairment of T-cell function; this may account for the observed long-term remission following B-cell recovery in rituximab treated patients. Likewise, our data support the critical role of Dsg-specific T-cell clones in orchestrating the inflammatory response and B-cell activation in pemphigus. Monitoring autoreactive T-cells in patients may indeed provide further information on the role of these cells, and would be the starting point for designating therapies aimed at restoring the lost immune tolerance against Dsg. The present review focuses on current advances, unmet challenges and future perspectives of pemphigus management.

          Related collections

          Most cited references289

          • Record: found
          • Abstract: found
          • Article: not found

          JAK–STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects

          The Janus kinase/signal transduction and activator of transcription (JAK–STAT) signaling pathway is implicated in the pathogenesis of inflammatory and autoimmune diseases including rheumatoid arthritis, psoriasis, and inflammatory bowel disease. Many cytokines involved in the pathogenesis of autoimmune and inflammatory diseases use JAKs and STATs to transduce intracellular signals. Mutations in JAK and STAT genes cause a number of immunodeficiency syndromes, and polymorphisms in these genes are associated with autoimmune diseases. The success of small-molecule JAK inhibitors (Jakinibs) in the treatment of rheumatologic disease demonstrates that intracellular signaling pathways can be targeted therapeutically to treat autoimmunity. Tofacitinib, the first rheumatologic Jakinib, is US Food and Drug Administration (FDA) approved for rheumatoid arthritis and is currently under investigation for other autoimmune diseases. Many other Jakinibs are in preclinical development or in various phases of clinical trials. This review describes the JAK–STAT pathway, outlines its role in autoimmunity, and explains the rationale/pre-clinical evidence for targeting JAK–STAT signaling. The safety and clinical efficacy of the Jakinibs are reviewed, starting with the FDA-approved Jakinib tofacitinib, and continuing on to next-generation Jakinibs. Recent and ongoing studies are emphasized, with a focus on emerging indications for JAK inhibition and novel mechanisms of JAK–STAT signaling blockade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease

            Ideally, therapy for autoimmune diseases should eliminate pathogenic autoimmune cells while sparing protective immunity, but feasible strategies for such an approach have been elusive. Here, we show that in the antibody-mediated autoimmune disease pemphigus vulgaris (PV), autoantigen-based chimeric immunoreceptors can direct T cells to kill autoreactive B lymphocytes through the specificity of the B cell receptor (BCR). We engineered human T cells to express a chimeric autoantibody receptor (CAAR), consisting of the PV autoantigen, desmoglein (Dsg) 3, fused to CD137-CD3 ζ signaling domains. Dsg3 CAAR-T cells exhibit specific cytotoxicity against cells expressing anti-Dsg3 BCRs in vitro and expand, persist, and specifically eliminate Dsg3-specific B cells in vivo. CAAR-T cells may provide an effective and universal strategy for specific targeting of autoreactive B cells in antibody-mediated autoimmune disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells.

              The adoptive transfer of T cells expressing anti-CD19 chimeric antigen receptors (CARs) has shown remarkable curative potential against advanced B-cell malignancies, but multiple trials have also reported patient relapses due to the emergence of CD19-negative leukemic cells. Here, we report the design and optimization of single-chain, bispecific CARs that trigger robust cytotoxicity against target cells expressing either CD19 or CD20, two clinically validated targets for B-cell malignancies. We determined the structural parameters required for efficient dual-antigen recognition, and we demonstrate that optimized bispecific CARs can control both wild-type B-cell lymphoma and CD19(-) mutants with equal efficiency in vivo To our knowledge, this is the first bispecific CAR capable of preventing antigen escape by performing true OR-gate signal computation on a clinically relevant pair of tumor-associated antigens. The CD19-OR-CD20 CAR is fully compatible with existing T-cell manufacturing procedures and implementable by current clinical protocols. These results present an effective solution to the challenge of antigen escape in CD19 CAR T-cell therapy, and they highlight the utility of structure-based rational design in the development of receptors with higher-level complexity. Cancer Immunol Res; 4(6); 498-508. ©2016 AACRSee related Spotlight by Sadelain, p. 473.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                25 June 2019
                2019
                : 10
                : 1418
                Affiliations
                [1] 1Department of Dermatology and Allergology, Philipps University , Marburg, Germany
                [2] 2Surgery and Translational Medicine, Section of Dermatology, University of Florence , Florence, Italy
                [3] 3Section of Dermatology, Departement of Health Sciences, University of Florence , Florence, Italy
                Author notes

                Edited by: Pascal Joly, Centre Hospitalier Universitaire (CHU) de Rouen, France

                Reviewed by: Ralf J. Ludwig, Universität zu Lübeck, Germany; Marko Radic, University of Tennessee College of Medicine, United States

                *Correspondence: Dario Didona dario.didona@ 123456uk-gm.de

                This article was submitted to Autoimmune and Autoinflammatory Disorders, a section of the journal Frontiers in Immunology

                †These authors share first authorship

                ‡Senior authorship

                Article
                10.3389/fimmu.2019.01418
                6603181
                31293582
                38dd4011-2717-4786-b42c-44275afaf009
                Copyright © 2019 Didona, Maglie, Eming and Hertl.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 March 2019
                : 05 June 2019
                Page count
                Figures: 9, Tables: 2, Equations: 0, References: 311, Pages: 28, Words: 23068
                Categories
                Immunology
                Review

                Immunology
                pemphigus,caar t-cell,rituximab,anti-cd 20 antibodies,btk inhibitors,neonatal fc receptor (fcrn)

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content864

                Cited by74

                Most referenced authors3,434