14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metabolomics activity screening for identifying metabolites that modulate phenotype

      , , , ,
      Nature Biotechnology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Innovation: Metabolomics: the apogee of the omics trilogy.

          Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and are shaping our understanding of cell biology, physiology and medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            XCMS Online: a web-based platform to process untargeted metabolomic data.

            Recently, interest in untargeted metabolomics has become prevalent in the general scientific community among an increasing number of investigators. The majority of these investigators, however, do not have the bioinformatic expertise that has been required to process metabolomic data by using command-line driven software programs. Here we introduce a novel platform to process untargeted metabolomic data that uses an intuitive graphical interface and does not require installation or technical expertise. This platform, called XCMS Online, is a web-based version of the widely used XCMS software that allows users to easily upload and process liquid chromatography/mass spectrometry data with only a few mouse clicks. XCMS Online provides a solution for the complete untargeted metabolomic workflow including feature detection, retention time correction, alignment, annotation, statistical analysis, and data visualization. Results can be browsed online in an interactive, customizable table showing statistics, chromatograms, and putative METLIN identities for each metabolite. Additionally, all results and images can be downloaded as zip files for offline analysis and publication. XCMS Online is available at https://xcmsonline.scripps.edu.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low O2 tensions and the prevention of differentiation of hES cells.

              Early-stage mammalian embryos develop in a low O(2) environment (hypoxia). hES cells, however, are generally cultured under an atmosphere of 21% O(2) (normoxia), under which conditions they tend to differentiate spontaneously. Such conditions may not be the most suitable, therefore, for hES cell propagation. Here we have tested two hypotheses. The first hypothesis was that hES cells would grow as well under hypoxic as under normoxic conditions. The second hypothesis was that hypoxic culture would reduce the amount of spontaneous cell differentiation that occurs in hES colonies. Both hypotheses proved to be correct. Cells proliferated as well under 3% and 5% O(2) as they did under 21% O(2), and growth was only slightly reduced at 1% O(2). The appearance of differentiated regions as assessed morphologically, biochemically (by the production of human chorionic gonadotropin and progesterone), and immunohistochemically (by the loss of stage-specific embryonic antigen-4 and Oct-4 and gain of stage-specific embryonic antigen-1 marker expression) was markedly reduced under hypoxic conditions. In addition, hES cell growth under hypoxia provided enhanced formation of embryoid bodies. Hypoxic culture would appear to be necessary to maintain full pluripotency of hES cells.
                Bookmark

                Author and article information

                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Nature
                1087-0156
                1546-1696
                April 5 2018
                April 5 2018
                : 36
                : 4
                : 316-320
                Article
                10.1038/nbt.4101
                29621222
                38bd1c7d-1d73-4a23-8817-05268cff5d9a
                © 2018
                History

                Comments

                Comment on this article