17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular sieving of ethylene from ethane using a rigid metal–organic framework

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

          Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Seven chemical separations to change the world

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites.

              The energy costs associated with large-scale industrial separation of light hydrocarbons by cryogenic distillation could potentially be lowered through development of selective solid adsorbents that operate at higher temperatures. Here, the metal-organic framework Fe(2)(dobdc) (dobdc(4-) : 2,5-dioxido-1,4-benzenedicarboxylate) is demonstrated to exhibit excellent performance characteristics for separation of ethylene/ethane and propylene/propane mixtures at 318 kelvin. Breakthrough data obtained for these mixtures provide experimental validation of simulations, which in turn predict high selectivities and capacities of this material for the fractionation of methane/ethane/ethylene/acetylene mixtures, removal of acetylene impurities from ethylene, and membrane-based olefin/paraffin separations. Neutron powder diffraction data confirm a side-on coordination of acetylene, ethylene, and propylene at the iron(II) centers, while also providing solid-state structural characterization of the much weaker interactions of ethane and propane with the metal.
                Bookmark

                Author and article information

                Journal
                Nature Materials
                Nature Mater
                Springer Nature America, Inc
                1476-1122
                1476-4660
                November 5 2018
                Article
                10.1038/s41563-018-0206-2
                30397312
                38912d80-429c-497a-9b84-aae9357b33bb
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article