18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct characteristics of dasatinib-induced pyroptosis in gasdermin E-expressing human lung cancer A549 cells and neuroblastoma SH-SY5Y cells

      research-article
      , ,
      Oncology Letters
      D.A. Spandidos
      pyroptosis, dasatinib, tumor cells, gasdermin D, gasdermin E, p53

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dasatinib, a multikinase inhibitor, is used in the treatment of chronic myeloid leukemia and was developed to overcome imatinib resistance. Its mechanism of action involves the induction of apoptosis, autophagy and necroptosis. However, it remains unclear whether dasatinib can induce pyroptosis. In the present study, gasdermin E (GSDME)-expressing SH-SY5Y and A549 cells were chosen for investigation. Typical pyroptotic features, such as cleavage of GSDME protein, leakage of lactate dehydrogenase and large bubbled morphology, were observed in both cell lines after exposure to dasatinib. The generation of GSDME fragments was inhibited by specific caspase-3 inhibitor zDEVD in SH-SY5Y cells and pan-caspase inhibitor zVAD in A549 cells. Moreover, distinct characteristics of pyroptosis were observed in A549 cells, which occurred only with a high percentage of Annexin V/propidium iodide double-stained cells and low level of GSDME protein cleavage. The sensitivity of A549 cells to dasatinib is significantly reduced by increasing cell numbers. The elevation of GSDMD and GSDME protein levels was induced by low concentrations of dasatinib, which was not influenced by the reduction of p53 protein with RNA interference. In conclusion, to the best of our knowledge, this is the first study to report that dasatinib can induce pyroptosis in tumor cells and increase the protein levels of GSDMD and GSDME in a p53-independent manner.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a Gasdermin

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs

            The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1 −/Δ mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1 −/Δ mice, delaying age-related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overriding imatinib resistance with a novel ABL kinase inhibitor.

              Resistance to the ABL kinase inhibitor imatinib (STI571 or Gleevec) in chronic myeloid leukemia (CML) occurs through selection for tumor cells harboring BCR-ABL kinase domain point mutations that interfere with drug binding. Crystallographic studies predict that most imatinib-resistant mutants should remain sensitive to inhibitors that bind ABL with less stringent conformational requirements. BMS-354825 is an orally bioavailable ABL kinase inhibitor with two-log increased potency relative to imatinib that retains activity against 14 of 15 imatinib-resistant BCR-ABL mutants. BMS-354825 prolongs survival of mice with BCR-ABL-driven disease and inhibits proliferation of BCR-ABL-positive bone marrow progenitor cells from patients with imatinib-sensitive and imatinib-resistant CML. These data illustrate how molecular insight into kinase inhibitor resistance can guide the design of second-generation targeted therapies.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                July 2020
                21 April 2020
                21 April 2020
                : 20
                : 1
                : 145-154
                Affiliations
                Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
                Author notes
                Correspondence to: Professor Qiyang He, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, P.R. China, E-mail: qiyang_he@ 123456vip.163.com
                Article
                OL-0-0-11556
                10.3892/ol.2020.11556
                7285962
                3875fa67-a59c-474b-8c99-5fd0d732f0b9
                Copyright: © Zhang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 16 August 2019
                : 21 February 2020
                Categories
                Articles

                Oncology & Radiotherapy
                pyroptosis,dasatinib,tumor cells,gasdermin d,gasdermin e,p53
                Oncology & Radiotherapy
                pyroptosis, dasatinib, tumor cells, gasdermin d, gasdermin e, p53

                Comments

                Comment on this article