Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime

      1 , 2 , 1
      The Journal of Chemical Physics
      AIP Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Ultrastrong coupling between light and matter

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tilting a ground-state reactivity landscape by vibrational strong coupling

            Many chemical methods have been developed to favor a particular product in transformations of compounds that have two or more reactive sites. We explored a different approach to site selectivity using vibrational strong coupling (VSC) between a reactant and the vacuum field of a microfluidic optical cavity. Specifically, we studied the reactivity of a compound bearing two possible silyl bond cleavage sites—Si–C and Si–O, respectively—as a function of VSC of three distinct vibrational modes in the dark. The results show that VSC can indeed tilt the reactivity landscape to favor one product over the other. Thermodynamic parameters reveal the presence of a large activation barrier and substantial changes to the activation entropy, confirming the modified chemical landscape under strong coupling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hybrid Light–Matter States in a Molecular and Material Science Perspective

              The notion that light and matter states can be hybridized the way s and p orbitals are mixed is a concept that is not familiar to most chemists and material scientists. Yet it has much potential for molecular and material sciences that is just beginning to be explored. For instance, it has already been demonstrated that the rate and yield of chemical reactions can be modified and that the conductivity of organic semiconductors and nonradiative energy transfer can be enhanced through the hybridization of electronic transitions. The hybridization is not limited to electronic transitions; it can be applied for instance to vibrational transitions to selectively perturb a given bond, opening new possibilities to change the chemical reactivity landscape and to use it as a tool in (bio)molecular science and spectroscopy. Such results are not only the consequence of the new eigenstates and energies generated by the hybridization. The hybrid light-matter states also have unusual properties: they can be delocalized over a very large number of molecules (up to ca. 105), and they become dispersive or momentum-sensitive. Importantly, the hybridization occurs even in the absence of light because it is the zero-point energies of the molecular and optical transitions that generate the new light-matter states. The present work is not a review but rather an Account from the author's point of view that first introduces the reader to the underlying concepts and details of the features of hybrid light-matter states. It is shown that light-matter hybridization is quite easy to achieve: all that is needed is to place molecules or a material in a resonant optical cavity (e.g., between two parallel mirrors) under the right conditions. For vibrational strong coupling, microfluidic IR cells can be used to study the consequences for chemistry in the liquid phase. Examples of modified properties are given to demonstrate the full potential for the molecular and material sciences. Finally an outlook of future directions for this emerging subject is given.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Journal of Chemical Physics
                J. Chem. Phys.
                AIP Publishing
                0021-9606
                1089-7690
                May 21 2021
                May 21 2021
                : 154
                : 19
                : 191103
                Affiliations
                [1 ]Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
                [2 ]Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
                Article
                10.1063/5.0046307
                34240900
                386b0182-5bab-44a4-86fe-7b5a5090e39e
                © 2021

                https://publishing.aip.org/authors/rights-and-permissions

                History

                Comments

                Comment on this article