1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced mechanisms of pooling and channel attention for deep learning feature maps

      research-article
      1 , 1 , 2 ,
      PeerJ Computer Science
      PeerJ Inc.
      DNNs, Max pooling, Average pooling, FMAPooling, Self-attention, FMAttn

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pooling function is vital for deep neural networks (DNNs). The operation is to generalize the representation of feature maps and progressively cut down the spatial size of feature maps to optimize the computing consumption of the network. Furthermore, the function is also the basis for the computer vision attention mechanism. However, as a matter of fact, pooling is a down-sampling operation, which makes the feature-map representation approximately to small translations with the summary statistic of adjacent pixels. As a result, the function inevitably leads to information loss more or less. In this article, we propose a fused max-average pooling (FMAPooling) operation as well as an improved channel attention mechanism (FMAttn) by utilizing the two pooling functions to enhance the feature representation for DNNs. Basically, the methods are to enhance multiple-level features extracted by max pooling and average pooling respectively. The effectiveness of the proposals is verified with VGG, ResNet, and MobileNetV2 architectures on CIFAR10/100 and ImageNet100. According to the experimental results, the FMAPooling brings up to 1.63% accuracy improvement compared with the baseline model; the FMAttn achieves up to 2.21% accuracy improvement compared with the previous channel attention mechanism. Furthermore, the proposals are extensible and could be embedded into various DNN models easily, or take the place of certain structures of DNNs. The computation burden introduced by the proposals is negligible.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Attention Is All You Need

          The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. 15 pages, 5 figures
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Going deeper with convolutions

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Squeeze-and-Excitation Networks

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ Comput Sci
                PeerJ Comput Sci
                peerj-cs
                PeerJ Computer Science
                PeerJ Inc. (San Diego, USA )
                2376-5992
                21 November 2022
                2022
                : 8
                : e1161
                Affiliations
                [1 ]Graduate School of Science and Engineering, Ritsumeikan University , Kusatsu, Shiga, Japan
                [2 ]College of Science and Engineering, Ritsumeikan University , Kusatsu, Shiga, Japan
                Article
                cs-1161
                10.7717/peerj-cs.1161
                9748832
                383c9a8d-6214-4ac2-9d22-9d95650c7199
                © 2022 Li et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.

                History
                : 11 August 2022
                : 26 October 2022
                Funding
                This work received no funding for this work.
                Categories
                Artificial Intelligence
                Computer Vision
                Data Science
                Visual Analytics
                Neural Networks

                dnns,max pooling,average pooling,fmapooling,self-attention,fmattn

                Comments

                Comment on this article