74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta‐omics‐based approach

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is evidence that nonalcoholic fatty liver disease (NAFLD) is affected by gut microbiota. Therefore, we investigated its modifications in pediatric NAFLD patients using targeted metagenomics and metabolomics. Stools were collected from 61 consecutive patients diagnosed with nonalcoholic fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), or obesity and 54 healthy controls (CTRLs), matched in a case‐control fashion. Operational taxonomic units were pyrosequenced targeting 16S ribosomal RNA and volatile organic compounds determined by solid‐phase microextraction gas chromatography‐mass spectrometry. The α‐diversity was highest in CTRLs, followed by obese, NASH, and NAFL patients; and β‐diversity distinguished between patients and CTRLs but not NAFL and NASH. Compared to CTRLs, in NAFLD patients Actinobacteria were significantly increased and Bacteroidetes reduced. There were no significant differences among the NAFL, NASH, and obese groups. Overall NAFLD patients had increased levels of Bradyrhizobium, Anaerococcus, Peptoniphilus, Propionibacterium acnes, Dorea, and Ruminococcus and reduced proportions of Oscillospira and Rikenellaceae compared to CTRLs. After reducing metagenomics and metabolomics data dimensionality, multivariate analyses indicated a decrease of Oscillospira in NAFL and NASH groups and increases of Ruminococcus, Blautia, and Dorea in NASH patients compared to CTRLs. Of the 292 volatile organic compounds, 26 were up‐regulated and 2 down‐regulated in NAFLD patients. Multivariate analyses found that combination of Oscillospira, Rickenellaceae, Parabacteroides, Bacteroides fragilis, Sutterella, Lachnospiraceae, 4‐methyl‐2‐pentanone, 1‐butanol, and 2‐butanone could discriminate NAFLD patients from CTRLs. Univariate analyses found significantly lower levels of Oscillospira and higher levels of 1‐pentanol and 2‐butanone in NAFL patients compared to CTRLs. In NASH, lower levels of Oscillospira were associated with higher abundance of Dorea and Ruminococcus and higher levels of 2‐butanone and 4‐methyl‐2‐pentanone compared to CTRLs. Conclusion: An Oscillospira decrease coupled to a 2‐butanone up‐regulation and increases in Ruminococcus and Dorea were identified as gut microbiota signatures of NAFL onset and NAFL‐NASH progression, respectively. (H epatology 2017;65:451‐464)

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A core gut microbiome in obese and lean twins

            The human distal gut harbors a vast ensemble of microbes (the microbiota) that provide us with important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides1–6. Studies of a small number of unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes6–8, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is utilized and stored3–5. To address the question of how host genotype, environmental exposures, and host adiposity influence the gut microbiome, we have characterized the fecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity, and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiologic states (obese versus lean).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association.

                Bookmark

                Author and article information

                Journal
                Hepatology
                Hepatology
                Wiley
                0270-9139
                1527-3350
                2017
                June 02 2016
                February 2017
                : 65
                : 2
                : 451-464
                Affiliations
                [1 ]Human Microbiome Unit, “Bambino Gesù” Children's Hospital,IRCCS,Rome,Italy
                [2 ]Hepato‐Metabolic Disease Unit, “Bambino Gesù” Children's Hospital,IRCCS,Rome,Italy
                [3 ]Liver Research Unit, “Bambino Gesù” Children's Hospital,IRCCS,Rome,Italy
                [4 ]Predictive Models for Biomedicine and Environment Unit,Fondazione Bruno Kessler,Trento,Italy
                [5 ]Institute for Systems Analysis and Computer Science “Antonio Ruberti”,National Research Council,00185,Rome,Italy
                [6 ]SysBio Centre for Systems Biology,00185,Rome,Italy
                [7 ]Department of Chemistry,Sapienza University of Rome,Italy
                [8 ]Scientific Directorate, “Bambino Gesù” Children's Hospital,IRCCS,Rome,Italy
                [9 ]Parasitology Unit, “Bambino Gesù” Children's Hospital,IRCCS,Rome,Italy
                Article
                10.1002/hep.28572
                27028797
                382d6b59-f291-4d0c-a30e-fb6a14a5c828
                © 2017

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article