Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The disappearances of six supernova progenitors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          As part of a larger completed Hubble Space Telescope (HST) Snapshot program, we observed the sites of six nearby core-collapse supernovae (SNe) at high spatial resolution: SN 2012A, SN 2013ej, SN 2016gkg, SN 2017eaw, SN 2018zd, and SN 2018aoq. These observations were all conducted at sufficiently late times in each SN’s evolution to demonstrate that the massive-star progenitor candidate identified in each case in pre-explosion imaging data had indeed vanished and was therefore most likely the actual progenitor. However, we have determined for SN 2016gkg that the progenitor candidate was most likely a blend of two objects: the progenitor, which itself has likely vanished, and another closely neighbouring star. We thus provide a revised estimate of that progenitor’s properties: a binary system with a hydrogen-stripped primary star at explosion with effective temperature ≈6300–7900 K, bolometric luminosity ≈104.65 L⊙, radius ≈118–154 R⊙, and initial mass 9.5–11 M⊙. Utilizing late-time additional archival HST data nearly contemporaneous with our Snapshots, we also show that SN 2017eaw had a luminous ultraviolet excess, which is best explained as a result of ongoing interaction of the SN shock with pre-existing circumstellar matter. We offer the caveat, particularly in the case of SN 2013ej, that obscuration from SN dust may be compromising our conclusions. This sample adds to the growing list of confirmed or likely core-collapse SN progenitors.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: not found
          • Article: not found

          MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

            The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reevaluating Old Stellar Populations

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Monthly Notices of the Royal Astronomical Society
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                February 2023
                December 16 2022
                February 2023
                December 16 2022
                December 05 2022
                : 519
                : 1
                : 471-482
                Article
                10.1093/mnras/stac3549
                3822c0ad-155d-442d-81c2-fc77a8bfad47
                © 2022

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article