9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nutrient and Mineral Compositions of Wild Leafy Vegetables of the Karen and Lawa Communities in Thailand

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wild food plants are commonly used in the traditional diets of indigenous people in many parts of the world, including northern Thailand. The potential contribution of wild food plants to the nutrition of the Karen and Lawa communities remains poorly understood. Wild food plants, with a focus on leafy vegetables, were ranked by the Cultural Food Significance Index (CFSI) based on semi-structured interviews. Twelve wild plant species were highly mentioned and widely consumed. The importance of the wild vegetables was mainly related to taste, availability, and multifunctionality of the species. Their contents of proximate and minerals (P, K, Na, Ca, Mg, Fe, Mn, Zn, and Cu) were analyzed using standard methods. The proximate contents were comparable to most domesticated vegetables. The contents of Mg (104 mg/100 g FW), Fe (11 mg/100 g FW), and Zn (19 mg/100 g FW) in the wild leafy vegetables were high enough to cover the daily recommended dietary allowances of adults (19–50 years), whereas a few species showed Mn contents higher than the tolerable upper intake level ( > 11 mg/100 g edible part). The wild leafy vegetables, therefore, are good sources of minerals and we recommend their continued usage by indigenous people. Further research on these wild leafy vegetables’ contents of antioxidants, vitamins, heavy metals, anti-nutrient factors, and food safety is recommended.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fiber and Prebiotics: Mechanisms and Health Benefits

          The health benefits of dietary fiber have long been appreciated. Higher intakes of dietary fiber are linked to less cardiovascular disease and fiber plays a role in gut health, with many effective laxatives actually isolated fiber sources. Higher intakes of fiber are linked to lower body weights. Only polysaccharides were included in dietary fiber originally, but more recent definitions have included oligosaccharides as dietary fiber, not based on their chemical measurement as dietary fiber by the accepted total dietary fiber (TDF) method, but on their physiological effects. Inulin, fructo-oligosaccharides, and other oligosaccharides are included as fiber in food labels in the US. Additionally, oligosaccharides are the best known “prebiotics”, “a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-bring and health.” To date, all known and suspected prebiotics are carbohydrate compounds, primarily oligosaccharides, known to resist digestion in the human small intestine and reach the colon where they are fermented by the gut microflora. Studies have provided evidence that inulin and oligofructose (OF), lactulose, and resistant starch (RS) meet all aspects of the definition, including the stimulation of Bifidobacterium, a beneficial bacterial genus. Other isolated carbohydrates and carbohydrate-containing foods, including galactooligosaccharides (GOS), transgalactooligosaccharides (TOS), polydextrose, wheat dextrin, acacia gum, psyllium, banana, whole grain wheat, and whole grain corn also have prebiotic effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting

            Background Adequate zinc nutrition is essential for adequate growth, immunocompetence and neurobehavioral development, but limited information on population zinc status hinders the expansion of interventions to control zinc deficiency. The present analyses were conducted to: (1) estimate the country-specific prevalence of inadequate zinc intake; and (2) investigate relationships between country-specific estimated prevalence of dietary zinc inadequacy and dietary patterns and stunting prevalence. Methodology and Principal Findings National food balance sheet data were obtained from the Food and Agriculture Organization of the United Nations. Country-specific estimated prevalence of inadequate zinc intake were calculated based on the estimated absorbable zinc content of the national food supply, International Zinc Nutrition Consultative Group estimated physiological requirements for absorbed zinc, and demographic data obtained from United Nations estimates. Stunting data were obtained from a recent systematic analysis based on World Health Organization growth standards. An estimated 17.3% of the world’s population is at risk of inadequate zinc intake. Country-specific estimated prevalence of inadequate zinc intake was negatively correlated with the total energy and zinc contents of the national food supply and the percent of zinc obtained from animal source foods, and positively correlated with the phytate: zinc molar ratio of the food supply. The estimated prevalence of inadequate zinc intake was correlated with the prevalence of stunting (low height-for-age) in children under five years of age (r = 0.48, P<0.001). Conclusions and Significance These results, which indicate that inadequate dietary zinc intake may be fairly common, particularly in Sub-Saharan Africa and South Asia, allow inter-country comparisons regarding the relative likelihood of zinc deficiency as a public health problem. Data from these analyses should be used to determine the need for direct biochemical and dietary assessments of population zinc status, as part of nationally representative nutritional surveys targeting countries estimated to be at high risk.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre

              (2010)
                Bookmark

                Author and article information

                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                26 November 2020
                December 2020
                : 9
                : 12
                : 1748
                Affiliations
                [1 ]Department of Biology, Faculty of Science, Chiang Mai University, Huay Kaew Road, Chiang Mai 50200, Thailand; punchay.botany@ 123456outlook.com (K.P.); aungkanainta@ 123456hotmail.com (A.I.); tiansawat@ 123456yahoo.co.th (P.T.)
                [2 ]Ecoinformatics and Biodiversity Group, Department of Biology, Aarhus University, Building1540, NyMunkegade114-116, DK-8000 Aarhus C, Denmark; henrik.balslev@ 123456bios.au.dk
                [3 ]Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Huay Kaew Road, Chiang Mai 50200, Thailand
                Author notes
                [* ]Correspondence: prasitwang@ 123456yahoo.com
                Author information
                https://orcid.org/0000-0002-9848-6074
                https://orcid.org/0000-0002-7101-7120
                Article
                foods-09-01748
                10.3390/foods9121748
                7759793
                33256047
                3801e85c-c4fe-4d80-a67e-ec39802c8c65
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 October 2020
                : 24 November 2020
                Categories
                Article

                ethnobotany,food analysis,indigenous food,micronutrients,nutrition

                Comments

                Comment on this article