17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Seawater Temperature on Coral Reefs in the Context of Climate Change. A Case Study of Cu Lao Cham – Hoi An Biosphere Reserve

      , , ,
      Frontiers in Marine Science
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coral reefs are a natural habitat for many species, as well as being of high economic and touristic significance. However, they represent an extremely sensitive ecosystem with a narrow ecological limit: prolonged high temperatures can lead to bleaching, in which corals expel their symbiotic algae and eventually corals will degrade and die. Based on climate change projections from the Blue Communities regional model, using linear regression, exponential regression, polynomial regression, we found that by the decades 2041–2050 and 2051–2060, whether with RCP 4.5 or RCP 8.5, the environmental temperature will change beyond the coral capacity threshold. Of particular concern is RCP 8.5, where the number of weeks per decade in which SST exceeds the threshold of coral reef bleaching is up to 55, compared to 0 at the beginning of the century. As well, the El Niño phenomenon often heats up waters to abnormally high temperatures in Cu Lao Cham and, it is projected to rise even further. Consequently, the combination of climate change and El Niño will cause abnormal increases in the seawater environment beyond the coral resistance threshold, leading to degradation of this internationally important site. Decisive and practical action must be taken to deal with climate change in this part of the world.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          An Overview of CMIP5 and the Experiment Design

          The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The representative concentration pathways: an overview

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Spatial and temporal patterns of mass bleaching of corals in the Anthropocene

                Bookmark

                Author and article information

                Journal
                Frontiers in Marine Science
                Front. Mar. Sci.
                Frontiers Media SA
                2296-7745
                August 9 2021
                August 9 2021
                : 8
                Article
                10.3389/fmars.2021.704682
                37d6447b-c47d-4fdd-b9cc-948a3472840c
                © 2021

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article