Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-term rainfall projection based on CMIP6 scenarios for Kurau River Basin of rice-growing irrigation scheme, Malaysia

      , ,
      SN Applied Sciences
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Rainfall is a vital component in the rice water demand model for estimating irrigation requirements. Information on how the future patterns are likely to evolve is essential for rice-growing management. This study presents possible changes in the future monthly rainfall patterns by perturbing model parameters of a stochastic rainfall using the change factor method for the Kerian rice irrigation scheme in Malaysia. An ensemble of five Global Climate Models under three Shared Socioeconomic Pathways (SSPs) (SSP1-2.6, SSP2-4.5, and SSP5-8.5) were employed to project rainfall from 2021 to 2080. The results show that the stochastic rainfall generator performed well at preserving the statistical properties between simulated and observed rainfall. Most scenarios predict the increasing trend of the mean monthly rainfall with only a few months decreasing in April and May occurring in off (dry) season. The future patterns 2051–2080 show a significant increasing trend during main (wet) season compared to the near future period (2021–2050). The projected future rainfall under SSP1-2.6 and SSP2-4.5 are higher than SSP5-8.5 from January to July, and December but lower from August to November. The projected annual rainfall will significantly increase toward 2080 during the main-season but uniform during the off-season except under SSP5-8.5, which is significantly decreasing. The output results are essential for rice farmers and water managers to manage and secure future rice irrigation water under the impact of future climate change. The projected changes in rainfall on the river basin demand further study before concluding the impact consequences for the rice sector.

          Article highlights

          • The rainfall generator performs well in simulating future rainfall based on an ensemble of five different GCMs considering three different scenarios emission (low, medium, and high) caused by greenhouse gas and radiative forcing.

          • The future rainfall projection predicted that off (dry) season would become wet, and main (wet) season would become wetter due increase in monthly and annual rainfall.

          • The outcomes of this paper are beneficial for rice farmers and water managers of the study area to manage their rice cultivation and water release from the reservoir schedules to avoid losses due to flood and drought.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          An Overview of CMIP5 and the Experiment Design

          The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization

            By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                SN Applied Sciences
                SN Appl. Sci.
                Springer Science and Business Media LLC
                2523-3963
                2523-3971
                March 2022
                February 05 2022
                March 2022
                : 4
                : 3
                Article
                10.1007/s42452-022-04952-x
                37c4a392-a31d-40aa-be32-b467b34c91ee
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article