19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite high conservation of the Notch pathway, its repression appears diverse between organisms. In Drosophila, a high-affinity complex forms between the CSL orthologue Su(H) and Hairless, which is analyzed in great detail in vitro and in vivo. Drosophila Hairless is shown to bind CBF1 and inhibit Notch transcriptional output in mammalian cells.

          Abstract

          In metazoans, the highly conserved Notch pathway drives cellular specification. On receptor activation, the intracellular domain of Notch assembles a transcriptional activator complex that includes the DNA-binding protein CSL, a composite of human C-promoter binding factor 1, Suppressor of Hairless of Drosophila melanogaster [Su(H)], and lin-12 and Glp-1 phenotype of Caenorhabditis elegans. In the absence of ligand, CSL represses Notch target genes. However, despite the structural similarity of CSL orthologues, repression appears largely diverse between organisms. Here we analyze the Notch repressor complex in Drosophila, consisting of the fly CSL protein, Su(H), and the corepressor Hairless, which recruits general repressor proteins. We show that the C-terminal domain of Su(H) is necessary and sufficient for forming a high-affinity complex with Hairless. Mutations in Su(H) that affect interactions with Notch and Mastermind have no effect on Hairless binding. Nonetheless, we demonstrate that Notch and Hairless compete for CSL in vitro and in cell culture. In addition, we identify a site in Hairless that is crucial for binding Su(H) and subsequently show that this Hairless mutant is strongly impaired, failing to properly assemble the repressor complex in vivo. Finally, we demonstrate Hairless-mediated inhibition of Notch signaling in a cell culture assay, which hints at a potentially similar repression mechanism in mammals that might be exploited for therapeutic purposes.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The canonical Notch signaling pathway: unfolding the activation mechanism.

          Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases.

            Germ-line transformation via transposable elements is a powerful tool to study gene function in Drosophila melanogaster. However, some inherent characteristics of transposon-mediated transgenesis limit its use for transgene analysis. Here, we circumvent these limitations by optimizing a phiC31-based integration system. We generated a collection of lines with precisely mapped attP sites that allow the insertion of transgenes into many different predetermined intergenic locations throughout the fly genome. By using regulatory elements of the nanos and vasa genes, we established endogenous sources of the phiC31 integrase, eliminating the difficulties of coinjecting integrase mRNA and raising the transformation efficiency. Moreover, to discriminate between specific and rare nonspecific integration events, a white gene-based reconstitution system was generated that enables visual selection for precise attP targeting. Finally, we demonstrate that our chromosomal attP sites can be modified in situ, extending their scope while retaining their properties as landing sites. The efficiency, ease-of-use, and versatility obtained here with the phiC31-based integration system represents an important advance in transgenesis and opens up the possibility of systematic, high-throughput screening of large cDNA sets and regulatory elements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2.

              We used the interaction trap, a yeast genetic selection for interacting proteins, to isolate human cyclin-dependent kinase interactor 1 (Cdi1). In yeast, Cdi1 interacts with cyclin-dependent kinases, including human Cdc2, Cdk2, and Cdk3, but not with Ckd4. In HeLa cells, Cdi1 is expressed at the G1 to S transition, and the protein forms stable complexes with Cdk2. Cdi1 bears weak sequence similarity to known tyrosine and dual specificity phosphatases. In vitro, Cdi1 removes phosphate from tyrosine residues in model substrates, but a mutant protein that bears a lesion in the putative active site cysteine does not. Overexpression of wild-type Cdi1 delays progression through the cell cycle in yeast and HeLa cells; delay is dependent on Cdi1 phosphatase activity. These experiments identify Cdi1 as a novel type of protein phosphatase that forms complexes with cyclin-dependent kinases.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 September 2011
                : 22
                : 17
                : 3242-3252
                Affiliations
                [1] aInstitut für Genetik, Universität Hohenheim, 70593 Stuttgart, Germany
                [2] bDepartment of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524
                University of Geneva
                Author notes
                †Address correspondence to: Dieter Maier ( dieter.maier@ 123456uni-hohenheim.de ).

                *Present address: Institut für Klinische Pharmakologie, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany.

                Article
                E11-05-0420
                10.1091/mbc.E11-05-0420
                3164469
                21737682
                37c29822-b7cd-4db5-801e-0bd63b7d1afa
                © 2011 Maier et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 11 May 2011
                : 23 June 2011
                : 27 June 2011
                Categories
                Articles
                Signaling

                Molecular biology
                Molecular biology

                Comments

                Comment on this article