2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatial and temporal analysis on the impact of ultra-low volume indoor insecticide spraying on Aedes aegypti household density

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Aedes aegypti is the primary mosquito vector for several arboviruses, such as dengue, chikungunya and Zika viruses, which cause frequent outbreaks of human disease in tropical and subtropical regions. Control of these outbreaks relies on vector control, commonly in the form of insecticide sprays that target adult female mosquitoes. However, the spatial coverage and frequency of sprays needed to optimize effectiveness are unclear. In this study, we characterize the effect of ultra-low-volume (ULV) indoor spraying of pyrethroid insecticides on Ae. aegypti abundance within households. We also evaluate the effects of spray events during recent time periods or in neighboring households. Improved understanding of the duration and distance of the impact of a spray intervention on Ae. aegypti populations can inform vector control interventions, in addition to modeling efforts that contrast vector control strategies.

          Methods

          This project analyzes data from two large-scale experiments that involved six cycles of indoor pyrethroid spray applications in 2 years in the Amazonian city of Iquitos, Peru. We developed spatial multi-level models to disentangle the reduction in Ae. aegypti abundance that resulted from (i) recent ULV treatment within households and (ii) ULV treatment of adjacent or nearby households. We compared fits of models across a range of candidate weighting schemes for the spray effect, based on different temporal and spatial decay functions to understand lagged ULV effects.

          Results

          Our results suggested that the reduction of Ae. aegypti in a household was mainly due to spray events occurring within the same household, with no additional effect of sprays that occurred in neighboring households. Effectiveness of a spray intervention should be measured based on time since the most recent spray event, as we found no cumulative effect of sequential sprays. Based on our model, we estimated the spray effect is reduced by 50% approximately 28 days after the spray event.

          Conclusions

          The reduction of Ae. aegypti in a household was mainly determined by the number of days since the last spray intervention in that same household, highlighting the importance of spray coverage in high-risk areas with a spray frequency determined by local viral transmission dynamics.

          Graphical abstract

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13071-024-06308-3.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The global distribution and burden of dengue

          Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes 1 . For some patients dengue is a life-threatening illness 2 . There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread 3 . The contemporary worldwide distribution of the risk of dengue virus infection 4 and its public health burden are poorly known 2,5 . Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanisation. Using cartographic approaches, we estimate there to be 390 million (95 percent credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of clinical or sub-clinical severity). This infection total is more than three times the dengue burden estimate of the World Health Organization 2 . Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help guide improvements in disease control strategies using vaccine, drug and vector control methods and in their economic evaluation. [285]
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus

              Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses. DOI: http://dx.doi.org/10.7554/eLife.08347.001
                Bookmark

                Author and article information

                Contributors
                akawiecki@ucdavis.edu
                cmbarker@ucdavis.edu
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                11 June 2024
                11 June 2024
                2024
                : 17
                : 254
                Affiliations
                [1 ]University of California Davis, ( https://ror.org/05rrcem69) Davis, CA USA
                [2 ]Pacific Southwest Center of Excellence in Vector-Borne Diseases, University of California Davis, ( https://ror.org/05rrcem69) Davis, CA USA
                Article
                6308
                10.1186/s13071-024-06308-3
                11165869
                38863023
                37a33109-7ac4-44c3-a1a8-cb4715c8e7a0
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 10 February 2024
                : 25 April 2024
                Funding
                Funded by: National Institutes of Health
                Award ID: 5P01AI098670
                Award ID: 5P01AI098670
                Award ID: 5P01AI098670
                Award Recipient :
                Funded by: Centers for Disease Control and Prevention
                Award ID: 1U01CK000516
                Award ID: 1U01CK000516
                Award Recipient :
                Funded by: National Science Foundation
                Award ID: RTG/DMS - 1246991
                Award Recipient :
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Parasitology
                aedes aegypti,dengue,mosquito,vector-borne diseases,insecticide,insect control,peru
                Parasitology
                aedes aegypti, dengue, mosquito, vector-borne diseases, insecticide, insect control, peru

                Comments

                Comment on this article