3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial degradation of organophosphorus compounds.

          Synthetic organophosphorus compounds are used as pesticides, plasticizers, air fuel ingredients and chemical warfare agents. Organophosphorus compounds are the most widely used insecticides, accounting for an estimated 34% of world-wide insecticide sales. Contamination of soil from pesticides as a result of their bulk handling at the farmyard or following application in the field or accidental release may lead occasionally to contamination of surface and ground water. Several reports suggest that a wide range of water and terrestrial ecosystems may be contaminated with organophosphorus compounds. These compounds possess high mammalian toxicity and it is therefore essential to remove them from the environments. In addition, about 200,000 metric tons of nerve (chemical warfare) agents have to be destroyed world-wide under Chemical Weapons Convention (1993). Bioremediation can offer an efficient and cheap option for decontamination of polluted ecosystems and destruction of nerve agents. The first micro-organism that could degrade organophosphorus compounds was isolated in 1973 and identified as Flavobacterium sp. Since then several bacterial and a few fungal species have been isolated which can degrade a wide range of organophosphorus compounds in liquid cultures and soil systems. The biochemistry of organophosphorus compound degradation by most of the bacteria seems to be identical, in which a structurally similar enzyme called organophosphate hydrolase or phosphotriesterase catalyzes the first step of the degradation. organophosphate hydrolase encoding gene opd (organophosphate degrading) gene has been isolated from geographically different regions and taxonomically different species. This gene has been sequenced, cloned in different organisms, and altered for better activity and stability. Recently, genes with similar function but different sequences have also been isolated and characterized. Engineered microorganisms have been tested for their ability to degrade different organophosphorus pollutants, including nerve agents. In this article, we review and propose pathways for degradation of some organophosphorus compounds by microorganisms. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are discussed. The major achievements and technological advancements towards bioremediation of organophosphorus compounds, limitations of available technologies and future challenge are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure.

            Due to the restricted use and ban of brominated flame retardants, organophosphorus compounds (OPs), extensively used as flame retardants and plasticizers, are ubiquitous in various environmental compartments worldwide. The present study shows that the release of OPs from a wide variety of commercial products and wastewater discharge might be considered as primary emission sources and that high potential of long-range atmospheric transport and persistence of OPs would be responsible for their presence in various matrices on a global scale. The occurrence and environmental behaviors of OPs in diverse matrices (e.g., dust, air, water, sediment, soil and biota) are reviewed. Human exposures to OPs via dermal contact, dust ingestion, inhalation and dietary intake are comprehensively evaluated. Finally, this study identifies gaps in the existing issues and generates a future agenda for the emerging contaminants OPs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Immobilized Enzymes in Biosensor Applications

              Enzyme-based biosensing devices have been extensively developed over the last few decades, and have proven to be innovative techniques in the qualitative and quantitative analysis of a variety of target substrates over a wide range of applications. Distinct advantages that enzyme-based biosensors provide, such as high sensitivity and specificity, portability, cost-effectiveness, and the possibilities for miniaturization and point-of-care diagnostic testing make them more and more attractive for research focused on clinical analysis, food safety control, or disease monitoring purposes. Therefore, this review article investigates the operating principle of enzymatic biosensors utilizing electrochemical, optical, thermistor, and piezoelectric measurement techniques and their applications in the literature, as well as approaches in improving the use of enzymes for biosensors.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Environmental Sciences
                Journal of Environmental Sciences
                Elsevier BV
                10010742
                May 2023
                May 2023
                : 127
                : 234-250
                Article
                10.1016/j.jes.2022.04.023
                36522056
                377e151f-c69f-4deb-99e6-46e27aa5fc8a
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article