67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When confronted with similar environmental challenges, different organisms can exhibit dissimilar phenotypic responses. Therefore, understanding patterns of phenotypic divergence for closely related species requires considering distinct evolutionary histories. Here, we investigated how a common form of human-induced environmental alteration, habitat fragmentation, may drive phenotypic divergence among three closely related species of Bahamian mosquitofish ( Gambusia spp.). Focusing on one phenotypic trait (male coloration), having a priori predictions of divergence, we tested whether populations persisting in fragmented habitats differed from those inhabiting unfragmented habitats and examined the consistency of the pattern across species. Species exhibited both shared and unique patterns of phenotypic divergence between the two types of habitats, with shared patterns representing the stronger effect. For all species, populations in fragmented habitats had fewer dorsal-fin spots. In contrast, the magnitude and trajectory of divergence in dorsal-fin color, a sexually selected trait, differed among species. We identified fragmentation-mediated increased turbidity as a possible driver of these trait shifts. These results suggest that even closely related species can exhibit diverse phenotypic responses when encountering similar human-mediated selection regimes. This element of unpredictability complicates forecasting the phenotypic responses of wild organisms faced with anthropogenic change – an important component of biological conservation and ecosystem management.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Small sample inference for fixed effects from restricted maximum likelihood.

          Restricted maximum likelihood (REML) is now well established as a method for estimating the parameters of the general Gaussian linear model with a structured covariance matrix, in particular for mixed linear models. Conventionally, estimates of precision and inference for fixed effects are based on their asymptotic distribution, which is known to be inadequate for some small-sample problems. In this paper, we present a scaled Wald statistic, together with an F approximation to its sampling distribution, that is shown to perform well in a range of small sample settings. The statistic uses an adjusted estimator of the covariance matrix that has reduced small sample bias. This approach has the advantage that it reproduces both the statistics and F distributions in those settings where the latter is exact, namely for Hotelling T2 type statistics and for analysis of variance F-ratios. The performance of the modified statistics is assessed through simulation studies of four different REML analyses and the methods are illustrated using three examples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli.

            The role of historical contingency in evolution has been much debated, but rarely tested. Twelve initially identical populations of Escherichia coli were founded in 1988 to investigate this issue. They have since evolved in a glucose-limited medium that also contains citrate, which E. coli cannot use as a carbon source under oxic conditions. No population evolved the capacity to exploit citrate for >30,000 generations, although each population tested billions of mutations. A citrate-using (Cit+) variant finally evolved in one population by 31,500 generations, causing an increase in population size and diversity. The long-delayed and unique evolution of this function might indicate the involvement of some extremely rare mutation. Alternately, it may involve an ordinary mutation, but one whose physical occurrence or phenotypic expression is contingent on prior mutations in that population. We tested these hypotheses in experiments that "replayed" evolution from different points in that population's history. We observed no Cit+ mutants among 8.4 x 10(12) ancestral cells, nor among 9 x 10(12) cells from 60 clones sampled in the first 15,000 generations. However, we observed a significantly greater tendency for later clones to evolve Cit+, indicating that some potentiating mutation arose by 20,000 generations. This potentiating change increased the mutation rate to Cit+ but did not cause generalized hypermutability. Thus, the evolution of this phenotype was contingent on the particular history of that population. More generally, we suggest that historical contingency is especially important when it facilitates the evolution of key innovations that are not easily evolved by gradual, cumulative selection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptive radiation, ecological opportunity, and evolutionary determinism. American Society of Naturalists E. O. Wilson award address.

              Adaptive radiation refers to diversification from an ancestral species that produces descendants adapted to use a great variety of distinct ecological niches. In this review, I examine two aspects of adaptive radiation: first, that it results from ecological opportunity and, second, that it is deterministic in terms of its outcome and evolutionary trajectory. Ecological opportunity is usually a prerequisite for adaptive radiation, although in some cases, radiation can occur in the absence of preexisting opportunity. Nonetheless, many clades fail to radiate although seemingly in the presence of ecological opportunity; until methods are developed to identify and quantify ecological opportunity, the concept will have little predictive utility in understanding a priori when a clade might be expected to radiate. Although predicted by theory, replicated adaptive radiations occur only rarely, usually in closely related and poorly dispersing taxa found in the same region on islands or in lakes. Contingencies of a variety of types may usually preclude close similarity in the outcome of evolutionary diversification in other situations. Whether radiations usually unfold in the same general sequence is unclear because of the unreliability of methods requiring phylogenetic reconstruction of ancestral events. The synthesis of ecological, phylogenetic, experimental, and genomic advances promises to make the coming years a golden age for the study of adaptive radiation; natural history data, however, will always be crucial to understanding the forces shaping adaptation and evolutionary diversification.
                Bookmark

                Author and article information

                Journal
                Evol Appl
                Evol Appl
                eva
                Evolutionary Applications
                John Wiley & Sons, Ltd (Chichester, UK )
                1752-4571
                1752-4571
                August 2015
                16 July 2015
                : 8
                : 7
                : 679-691
                Affiliations
                [1 ]Marine Sciences Program, Department of Biological Sciences, Florida International University North Miami, FL, USA
                [2 ]Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State University Raleigh, NC, USA
                [3 ]Department of Applied Ecology, David Clark Labs, North Carolina State University Raleigh, NC, 27695, USA
                Author notes
                Correspondence Sean T. Giery, Department of Applied Ecology, David Clark Labs, North Carolina State University, Raleigh, NC 27695, USA., Tel.: +1-919-5154662;, fax: +1-919-5155327;, e-mail: stgiery@ 123456ncsu.edu

                The second author is currently affiliated to the third institution.

                Article
                10.1111/eva.12275
                4516420
                3763ee1d-883e-4a34-9e04-8e8a84c16392
                © 2015 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 August 2014
                : 13 April 2015
                Categories
                Original Articles

                Evolutionary Biology
                coloration,divergent evolution,gambusia,historical contingency,parallel evolution,rapid evolution,sexual selection

                Comments

                Comment on this article