6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An estrogen-dependent four-gene micronet regulating social recognition: A study with oxytocin and estrogen receptor-  and -  knockout mice

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Estrogens control many physiological and behavioral processes, some of which are connected to reproduction. These include sexual and other social behaviors. Here we implicate four gene products in a micronet required for mammalian social recognition, through which an individual learns to recognize other individuals. Female mice whose genes for the neuropeptide oxytocin (OT) or the estrogen receptor (ER)-beta or ER-alpha had been selectively "knocked out" were deficient specifically in social recognition and social anxiety. There was a remarkable parallelism among results from three separate gene knockouts. The data strongly suggest the involvement in social recognition of the four genes coding for ER-alpha, ER-beta, OT, and the OT receptor. We thus propose here a four-gene micronet, which links hypothalamic and limbic forebrain neurons in the estrogen control over the OT regulation of social recognition. In our model, estrogens act on the OT system at two levels: through ER-beta, they regulate the production of OT in the hypothalamic paraventricular nucleus, and through ER-alpha, they drive the transcription of the OT receptor in the amygdala. The proper operation of a social recognition mechanism allows for the expression of appropriate social behaviors, aggressive or affiliative.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroendocrine perspectives on social attachment and love.

          The purpose of this paper is to review existing behavioral and neuroendocrine perspectives on social attachment and love. Both love and social attachments function to facilitate reproduction, provide a sense of safety, and reduce anxiety or stress. Because social attachment is an essential component of love, understanding attachment formation is an important step toward identifying the neurobiological substrates of love. Studies of pair bonding in monogamous rodents, such as prairie voles, and maternal attachment in precocial ungulates offer the most accessible animal models for the study of mechanisms underlying selective social attachments and the propensity to develop social bonds. Parental behavior and sexual behavior, even in the absence of selective social behaviors, are associated with the concept of love; the analysis of reproductive behaviors, which is far more extensive than our understanding of social attachment, also suggests neuroendocrine substrates for love. A review of these literatures reveals a recurrent association between high levels of activity in the hypothalamic pituitary adrenal (HPA) axis and the subsequent expression of social behaviors and attachments. Positive social behaviors, including social bonds, may reduce HPA axis activity, while in some cases negative social interactions can have the opposite effect. Central neuropeptides, and especially oxytocin and vasopressin have been implicated both in social bonding and in the central control of the HPA axis. In prairie voles, which show clear evidence of pair bonds, oxytocin is capable of increasing positive social behaviors and both oxytocin and social interactions reduce activity in the HPA axis. Social interactions and attachment involve endocrine systems capable of decreasing HPA reactivity and modulating the autonomic nervous system, perhaps accounting for health benefits that are attributed to loving relationships.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cloning of a novel receptor expressed in rat prostate and ovary.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene.

              Estrogen receptor and its ligand, estradiol, have long been thought to be essential for survival, fertility, and female sexual differentiation and development. Consistent with this proposed crucial role, no human estrogen receptor gene mutations are known, unlike the androgen receptor, where many loss of function mutations have been found. We have generated mutant mice lacking responsiveness to estradiol by disrupting the estrogen receptor gene by gene targeting. Both male and female animals survive to adulthood with normal gross external phenotypes. Females are infertile; males have a decreased fertility. Females have hypoplastic uteri and hyperemic ovaries with no detectable corpora lutea. In adult wild-type and heterozygous females, 3-day estradiol treatment at 40 micrograms/kg stimulates a 3- to 4-fold increase in uterine wet weight and alters vaginal cornification, but the uteri and vagina do not respond in the animals with the estrogen receptor gene disruption. Prenatal male and female reproductive tract development can therefore occur in the absence of estradiol receptor-mediated responsiveness.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 13 2003
                May 02 2003
                May 13 2003
                : 100
                : 10
                : 6192-6197
                Article
                10.1073/pnas.0631699100
                156348
                12730370
                37628a14-b6b1-433b-bcaf-e27a482955aa
                © 2003
                History

                Comments

                Comment on this article