6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Nano‐Heterogeneous Membrane for Efficient Separation of Lithium from High Magnesium/Lithium Ratio Brine

      1 , 1
      Advanced Functional Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          MEMBRANE FILTRATION. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation.

          Membranes with unprecedented solvent permeance and high retention of dissolved solutes are needed to reduce the energy consumed by separations in organic liquids. We used controlled interfacial polymerization to form free-standing polyamide nanofilms less than 10 nanometers in thickness, and incorporated them as separating layers in composite membranes. Manipulation of nanofilm morphology by control of interfacial reaction conditions enabled the creation of smooth or crumpled textures; the nanofilms were sufficiently rigid that the crumpled textures could withstand pressurized filtration, resulting in increased permeable area. Composite membranes comprising crumpled nanofilms on alumina supports provided high retention of solutes, with acetonitrile permeances up to 112 liters per square meter per hour per bar. This is more than two orders of magnitude higher than permeances of commercially available membranes with equivalent solute retention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sustainable technologies for water purification from heavy metals: review and analysis

            We review and analyze current water purification technologies in the context of sustainability, and we introduce the Ranking Efficiency Product (REP) index, to evaluate their efficiency and implementation in this broader perspective. Water pollution is a global problem threatening the entire biosphere and affecting the life of many millions of people around the world. Not only is water pollution one of the foremost global risk factors for illness, diseases and death, but it also contributes to the continuous reduction of the available drinkable water worldwide. Delivering valuable solutions, which are easy to implement and affordable, often remains a challenge. Here we review the current state-of-the-art of available technologies for water purification and discuss their field of application for heavy metal ion removal, as heavy metal ions are the most harmful and widespread contaminants. We consider each technology in the context of sustainability, a largely neglected key factor, which may actually play a pivotal role in the implementation of each technology in real applications, and we introduce a compact index, the Ranking Efficiency Product (REP), to evaluate the efficiency and ease of implementation of the various technologies in this broader perspective. Emerging technologies, for which a detailed quantitative analysis and assessment is not yet possible according to this methodology, either due to scarcity or inhomogeneity of data, are discussed in the final part of the manuscript.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Polyamide membranes with nanoscale Turing structures for water purification

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                April 2021
                January 27 2021
                April 2021
                : 31
                : 14
                : 2009430
                Affiliations
                [1 ]Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
                Article
                10.1002/adfm.202009430
                37430e79-b9d6-4a2d-8d97-56fc94bfea1b
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article