8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stratigraphic paleobiology

      , ,
      Paleobiology
      Cambridge University Press (CUP)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stratigraphic paleobiology uses a modern understanding of the construction of the stratigraphic record—from beds to depositional sequences to sedimentary basins—to interpret patterns and guide sampling strategies in the fossil record. Over the past 25 years, its principles have been established primarily through forward numerical modeling, originally in shallow-marine systems and more recently in nonmarine systems. Predictions of these models have been tested through outcrop-scale and basin-scale field studies, which have also revealed new insights. At multi-basin and global scales, understanding the joint development of the biotic and sedimentary records has come largely from macrostratigraphy, the analysis of gap-bound packages of sedimentary rock. Here, we present recent advances in six major areas of stratigraphic paleobiology, including critical tests in the Po Plain of Italy, mass extinctions and recoveries, contrasts of shallow-marine and nonmarine systems, the interrelationships of habitats and stratigraphic architecture, large-scale stratigraphic architecture, and the assembly of regional ecosystems. We highlight the potential for future research that applies stratigraphic paleobiological concepts to studies of climate change, geochemistry, phylogenetics, and the large-scale structure of the fossil record. We conclude with the need for more stratigraphic thinking in paleobiology.

          Related collections

          Most cited references202

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            An astronomically dated record of Earth’s climate and its predictability over the last 66 million years

            Much of our understanding of Earth’s past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states—Hothouse, Warmhouse, Coolhouse, Icehouse—are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis

              J. Kruskal (1964)
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Paleobiology
                Paleobiology
                Cambridge University Press (CUP)
                0094-8373
                1938-5331
                March 07 2024
                : 1-18
                Article
                10.1017/pab.2024.2
                373b3ceb-5cd8-4f51-a97a-2c8d617f1e16
                © 2024

                Free to read

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article