1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tuberculosis treatment failure associated with evolution of antibiotic resilience

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The widespread use of antibiotics has placed bacterial pathogens under intense pressure to evolve new survival mechanisms. Genomic analysis of 51,229 Mycobacterium tuberculosis ( Mtb ) clinical isolates has identified an essential transcriptional regulator, Rv1830 , herein called resR for resilience regulator, as a frequent target of positive (adaptive) selection. resR mutants do not show canonical drug resistance or drug tolerance but instead shorten the post-antibiotic effect, meaning that they enable Mtb to resume growth after drug exposure substantially faster than wild-type strains. We refer to this phenotype as antibiotic resilience. ResR acts in a regulatory cascade with other transcription factors controlling cell growth and division, which are also under positive selection in clinical isolates of Mtb . Mutations of these genes are associated with treatment failure and the acquisition of canonical drug resistance.

          Resilient in the long term

          Tuberculosis caused by Mycobacterium tuberculosis is a persistent, sometimes lifelong infection that needs long courses of multiple antibiotics to treat. Not surprisingly, antibiotic resistance is rife. In a large sample of whole-genome data from clinical isolates, Liu et al . repeatedly observed an elongated phenotype showing rapid regrowth after typical regimens of antibiotic treatment. Signals of positive selection pointed to an essential transcriptional regulator (resR) and specific intergenic regions, which act in concert to regulate growth. Up to 10% of strains from high-tuberculosis-burden countries showed fixed mutations in these regions. Mutations across this cascade are associated with antibiotic treatment failure and are precursors to the emergence of classical antibiotic resistance. —CA

          Abstract

          Identifying the evolutionary signatures of adaptation to antibiotics in Mycobacterium tuberculosis reveals traits that enhance bacterial survival.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

          In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Sequence Alignment/Map format and SAMtools

            Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast gapped-read alignment with Bowtie 2.

              As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                December 09 2022
                December 09 2022
                : 378
                : 6624
                : 1111-1118
                Affiliations
                [1 ]Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.
                [2 ]Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA.
                [3 ]Present address: BioNTech US, Cambridge, MA, USA.
                [4 ]Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
                [5 ]Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02115, USA.
                [6 ]Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
                Article
                10.1126/science.abq2787
                36480634
                372e7e5b-412a-4a8c-b769-9271f317300d
                © 2022
                History

                Comments

                Comment on this article