1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Non-Mie optical resonances in anisotropic biomineral nanoparticles

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel famility of optical resonances driven by Cartesian anisotropy is demonstrated in calcite and vaterite nanoparticles.

          Abstract

          The optical properties of nanoparticles have attracted continuous attention owing to their high fundamental and applied importance across many disciplines. A recently emerged field of all-dielectric nanophotonics employs optically induced electric and magnetic Mie resonances in dielectric nanoparticles with a high refractive index. This property allows obtaining additional valuable degrees of freedom to control the optical responses of nanophotonic structures. Here we propose a conceptually distinct approach towards reaching optical resonances in dielectric nanoparticles. We show that, lacking conventional Mie resonances, low-index nanoparticles can exhibit a novel anisotropy-induced family of non-Mie eigenmodes. Specifically, we investigate light interactions with calcite and vaterite nanospheres and compare them with the Mie scattering by a fused silica sphere. Having close permittivities and the same dimensions, these particles exhibit significantly different scattering behavior owing to their internal structure. While a fused silica sphere does not demonstrate any spectral features, the uniaxial structure of the permittivity tensor for calcite and the non-diagonal permittivity tensor for vaterite result in a set of distinguishable peaks in scattering spectra. Multipole decomposition and eigenmode analysis reveal that these peaks are associated with a new family of electric and magnetic resonances. We identify magnetic dipole modes of ordinary, extraordinary and hybrid polarization as well as complex electric dipole resonances, featuring a significant toroidal electric dipole moment. As both vaterite and calcite are biominerals, naturally synthesized and exploited by a variety of living organisms, our results provide an indispensable toolbox for understanding and elucidating the mechanisms behind the optical functionalities of true biological systems.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Book: not found

          Plasmonics: Fundamentals and Applications

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Optical negative-index metamaterials

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional optical metamaterial with a negative refractive index.

              Metamaterials are artificially engineered structures that have properties, such as a negative refractive index, not attainable with naturally occurring materials. Negative-index metamaterials (NIMs) were first demonstrated for microwave frequencies, but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals. Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction. Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 (that is, low loss). This metamaterial is made of cascaded 'fishnet' structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.
                Bookmark

                Author and article information

                Journal
                NANOHL
                Nanoscale
                Nanoscale
                Royal Society of Chemistry (RSC)
                2040-3364
                2040-3372
                November 22 2018
                2018
                : 10
                : 45
                : 21031-21040
                Affiliations
                [1 ]Department of Electrical Engineering
                [2 ]Tel Aviv University
                [3 ]Tel Aviv 69978
                [4 ]Israel
                [5 ]Light-Matter Interaction Centre
                Article
                10.1039/C8NR07561A
                30427038
                3718dfee-60e8-4203-b49d-09de2b312847
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article